TS Spé Math sujet 1

$\frac{9}{5} + \sqrt{\frac{9}{5}}$ $\int_{0}^{5} \frac{dx}{1+x^{2}} = \frac{\pi}{4}$ $\frac{355}{113}$

Lundi 25 novembre 2019

2 heures

Exercice 1 (5 points):

On considère la suite (u_n) définie par $u_0=3$ et pour tout entier naturel n, par $u_{n+1}=2$ u_n+6

- 1) Démontrer que pour tout entier naturel n, $u_n = 9 \times 2^n 6$ un raisonnement par récurrence
- 2) Démontrer que pour tout entier naturel $n \ge 1$, u_n est divisible par 6

 Comme $n \ge 1$, $9 \times 2^n = 3 \times 3 \times 2 \times 2^{n-1} = 6 * K$ avec $K \in \mathbb{N}$. d'où u_n peut se factoriser par 6

On définit la suite (v_n) par, pour tout entier naturel $n \ge 1$, $v_n = \frac{u_n}{6}$

3) On considère l'affirmation : » pour tout entier naturel n non nul, v_n est un nombre premier »

Indiquer si cette affirmation est vraie ou fausse en justifiant votre réponse rappel : un nombre premier n'est divisible que par 1 et par lui-même

On calcule les premiers v_n à la calculatrice et on constate que v_6 =95 divisible par 1 lui même et 5 donc non premier affirmation fausse

- 4) a) Démontrer que pour tout $n \ge 1$, $v_{n+1} 2v_n = 1$ $v_{n+1} 2v_n = \frac{u_{n+1} 2u_n}{6} = \frac{9 \times 2^{n+1} 6 2 \times 9 \times 2^n + 12}{6} = \frac{6}{6} = 1$
 - b) En déduire que pour tout $n \ge 1$, v_n et v_{n+1} sont premier entre eux C'est une application du théorème de Bezout
 - c) En déduire, pour tout entier $n \ge 1$, le PGCD de u_n et u_{n+1} PGCD $(u_{n+1}; u_n) = PGCD(6v_{n+1}; 6v_n) = 6 PGCD(v_{n+1}; v_n) = 6 \times 1 = 6$
- 5) a) Vérifier que $2^4 \equiv 1(5)$

Facile

b) En déduire que si n est un entier de la forme 4k+2 avec k entier naturel, alors u_n est divisible par 5

$$u_n = 9 \times 2^{4k+2} - 6 = 9 \times (2^4)^k \times 2^2 - 6 \equiv 9 \times 1 \times 2^2 - 6$$
 (5) $\equiv 30$ (5) $\equiv 0$ (5) d'où la réponse

6) Le nombre u_n est-il divisible par 5 pour les autres valeurs de l'entier naturel n ? Justifier Il y a trois cas à étudier : n=4k , n=4k+1 et n = 4k+3

n = 4k :
$$u_n = 9 \times (2^4)^k - 6 \equiv 9 - 6$$
 (5) $\equiv 3$ (5) non divisible par 5
n = 4k + 1 : $u_n = 9 \times (2^4)^k \times 2^1 - 6 \equiv 9 \times 2 - 6$ (5) $\equiv 12$ (5) $\equiv 2$ (5) non divisible par 5
n = 4k + 3 : $u_n = 9 \times (2^4)^k \times 2^3 - 6 \equiv 9 \times 2^3 - 6$ (5) $\equiv 66$ (5) $\equiv 1$ (5) non divisible par 5

M. PHILIPPE 1/3

Exercice 2 (5 points):

PARTIE A

ROC: on rappelle l'identité de Bezout

Si pgcd(a;b) = d alors il existe des entiers u et v tels que : au+bv=d

Question : Citer et démontrer le théorème de Bezout

PARTIE B

Pour chacune des questions suivantes, indiquer si elle est vraie ou fausse et justifier la réponse choisie.

Question 1 : Le reste de la division de 2011²⁰¹¹ par 7 est 2

$$2011=7\times287+2$$
 donc $2011^{2011}\equiv 2^{2011}$ (7) or $2^3=8\equiv 1$ (7) donc comme $2011=3\times670+1$, on a: $2^{2011}=(2^3)^{670}\times 2^1\equiv 2$ (7) donc VRAIE

Question 2: pour tout entier naturel n non nul, $5^{6n+1}+2^{3n+1}$ est divisible par 7

$$5^6 = 15625 = 7 \times 2232 + 1 \text{ donc } 5^6 \equiv 1 \text{ (7)}$$
 $2^3 = 8 \equiv 1 \text{ (7) d"où}:$

$$5^{6n+1} + 2^{3n+1} \equiv (5^6)^n \times 5^1 + (2^3)^n \times 2^1$$
 (7) $\equiv 5 + 2$ (7) $\equiv 0$ (7) donc VRAIE

Question 3: Si $x^2 + x \equiv 0$ (6) alors $x \equiv 0$ (3)

On dresse un tab de congruence :

Reste de x modulo 6	0	1	2	3	4	5
Reste de x^2 modulo 6	0	1	4	3	4	1
Reste de x+x^2 modulo 6	0	2	0	0	2	0

D'après le tableau en choisissant $x \equiv 2$ (6), la somme est congru à 0. On peut donc tester un contre exemple : Si x = 8, on a $x^2 + x = 72 = 6 \times 12 \equiv 0$ (6) or x = 8 donc $x \equiv 2$ (3) donc FAUX

Question 4: Soit l'entier $N = a \times 10^3 + b \times 10^2 + 10 a + 7$ qui s'écrit en base $10 : N = \overline{aba7}$ (a et b sont donc des chiffres)

Si N est divisible par 7 alors a+b est divisible par 7

$$10^3 = 1000 \equiv 6 (7) \text{ car } 1000 = 7 \times 142 + 6$$

$$10^2 = 100 \equiv 2 (7) \text{ car } 100 = 7 \times 14 + 2$$

d'où N =
$$6a+2b+3a+7$$
 (7) c'est à dire N = $9a+2b+7$ (7) = $2a+2b+7$ (7)

d'où Si N \equiv 0 (7) cela donne 2a+2b+7 \equiv 0(7) cad 2a+2b \equiv 0(7) en multipliant par 4 on trouve

M. PHILIPPE 2/3

alors 8a+8b $\equiv 0 \ (7)$ et comme 8 $\equiv 1$ (7) , on obtient a+b $\equiv 0$ (7) VRAI

M. PHILIPPE 3/3