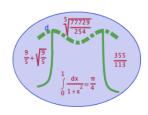
DM TS Spé math



Dans le plan rapporté à un repère orthonormé (O; \vec{i} , \vec{j}) on considère les points E, F et G de coordonnées respectives : (2;2), (-1;5) et (-3;3)

Une transformation du plan associe à tout point M(x; y) le point M'(x'; y') tel que :

$$\begin{cases} x' = \frac{5}{4}x + \frac{3}{4}y \\ y' = \frac{3}{4}x + \frac{5}{4}y \end{cases}$$

- 1) a) Calculer les coordonnées des points E', F', G' images des points E, F et G par cette transformation
 - b) Comparer les longueurs OE et OE' d'une part et OG et OG' d'autre part Donner la matrice carrée d'ordre 2 notée A telle que $\begin{pmatrix} x & y \\ y & y \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix}$
- 2) On étudie les coordonnées des images successives du sommet E du rectangle OEFG (on admet que OEFG est un rectangle)

On définit donc la suite des points E_n $(x_n; y_n)$ du plan par $E_0 = E$ et la relation de récurrence $\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = A \times \begin{pmatrix} x_n \\ y_n \end{pmatrix}$ où $(x_{n+1}; y_{n+1})$ sont les coordonnées de E_{n+1} .

Ainsi $x_0 = 2$ et $y_0 = 2$

- a) On admet que, pour tout entier $n \ge 1$, la matrice A^n peut s'écrire sous la forme
- $\begin{pmatrix} \alpha_n & \beta_n \\ \beta_n & \alpha_n \end{pmatrix}$. Démontrer par récurrence que pour tout entier naturel $n \ge 1$, on a :

$$\alpha_n = 2^{n-1} + \frac{1}{2^{n+1}}$$
 et $\beta_n = 2^{n-1} - \frac{1}{2^{n+1}}$

- b) Démontrer que pour tout entier naturel n le point E_n est sur la droite d'équation y = x
- c) Démontrer que la longueur OE_n tend vers $+\infty$ quand n tend vers $+\infty$
- 3) On s'intéresse dans cette question aux images successives du point G. On notera donc G_n cette suite de points. Sur quelle droite sont situés les points G_n et la longueur OG_n tendelle aussi vers $+\infty$ quand n tend vers $+\infty$?

M. PHILIPPE 1/1