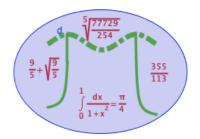
Correction DM 4



Problème 1

Les dix millièmes d'une solution de l'équation

 $x + \cos x = 0$

vous donneront le premier chiffre

- On étudie la fonction f définie sur R par f(x) = x + cos x
 Cette fonction est dérivable sur R et on a : f'(x)=1-sin x
 Pour tout x , -1≤sin x≤1 donc 0≤1-sin x≤2 d'où f'(x)≥0 et la fonction f est croissante
- Etude des limites de f en ±∞

On sait que $-1 \le \cos x \le 1$ donc $x-1 \le x + \cos x \le x + 1$ c'est à dire $x-1 \le f(x) \le x + 1$

- o $\lim_{x \to +\infty} x 1 = +\infty$ or $f(x) \ge x 1$ donc d'après les th de comparaisons sur les limites, $\lim_{x \to +\infty} f(x) = +\infty$
- $\circ \lim_{x \to -\infty} x + 1 = -\infty \text{ or } f(x) \le x + 1 \text{ donc d'après les th de comp ... }, \lim_{x \to -\infty} f(x) = -\infty$
- f est donc continue et strictement croissante sur \mathbb{R} et on a $f(]-\infty;+\infty[)=]-\infty;+\infty[$. Comme $0\in]-\infty;+\infty[$, d'après le th des la bijection, il existe un unique $\alpha\in]-\infty;+\infty[$ tel que $f(\alpha)=0$. La calculatrice donne $\alpha\approx 0.73908$ donc la décimale recherchée est 0

PROBLEME 2

Le dénominateur de la limite de f en $+\infty$ vous donnera le second chiffre

$$f(x) = \frac{(\sqrt{x^2 + x + 1} - x)(\sqrt{x^2 + x + 1} + x)}{\sqrt{x^2 + x + 1} + x}$$

$$f(\mathbf{x}) = \sqrt{x^2 + x + 1} - x$$

$$f(x) = \frac{x^2 + x + 1 - x^2}{\sqrt{x^2 + x + 1} + x} = \frac{x + 1}{\sqrt{x^2 + x + 1} + x}$$

$$f(x) = \frac{x\left(1 + \frac{1}{x}\right)}{\sqrt{x^2\left(1 + \frac{1}{x} + \frac{1}{x^2}\right) + x}} = \frac{x\left(1 + \frac{1}{x}\right)}{\sqrt{x^2}\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} + x}$$

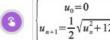
Comme on cherche la limite en $+\infty$, $\sqrt{x^2} = |x| = x$ d'où :

$$f(x) = \frac{x\left(1 + \frac{1}{x}\right)}{x\left(\sqrt{1 + \frac{1}{x} + \frac{1}{x^{2}}} + 1\right)} = \frac{1 + \frac{1}{x}}{\sqrt{1 + \frac{1}{x} + \frac{1}{x^{2}}} + 1}$$

On démontre alors facilement que la limite est $\frac{1}{2}$ donc le chiffre cherché est 2

PROBLEME 3

La limite de la suite (u_n) définie par



constitue mon troisième chiffre

avec comme aide l'utilisation de la suite (v_n) définie par $v_{n} = u_{n}^{2} - 4$

Une étude sur tableur ou calculatrice permet de conjecture que (v_n) est une suite géométrique donc on le démontre :

$$v_{n+1} = u_{n+1}^2 - 4 = \frac{1}{4}(u_n^2 + 12) - 4 = \frac{1}{4}u_n^2 - 1 = \frac{1}{4}(u_n^2 - 4) = \frac{1}{4}v_n$$

 (v_n) est donc géométrique de raison $\frac{1}{4}$ avec $v_0 = u_0^2 - 4 = -4$

On a donc
$$v_n = v_0 \times \left(\frac{1}{4}\right)^n = -4 \times \left(\frac{1}{4}\right)^n$$
 d'où $u_n^2 = 4 - 4 \times \left(\frac{1}{4}\right)^n$

comme $-1 < \frac{1}{4} < 1$, on a $\lim_{n \to +\infty} \left(\frac{1}{4}\right)^n = 0$ d'où $\lim_{n \to +\infty} u_n^2 = 4$ la limite de (u_n) serait donc -2 ou 2 mais on peut facilement démontrer par récurrence que la suite est positive donc la limite est 2

Le code recherché est donc 022

NB : Les quatre propositions peuvent être examinées indépendamment les unes des autres.

On considère une suite (u_n) positive et la suite (v_n) définie par $v_n = \frac{u_n}{1+u_n}$

Les propositions suivantes sont-elles vraies ou fausses? Justifier dans chaque cas.

- 1. Pour tout $n, 0 \leq v_n \leq 1$.
- 2. Si la suite (u_n) est convergente, alors la suite (v_n) est convergente.
- 3. Si la suite (u_n) est croissante, alors la suite (v_n) est croissante.
- Si la suite (v_n) est convergente, alors la suite (u_n) est convergente.
- 1) Pour tout n, $u_n \le u_n + 1$ donc le quotient $\frac{u_n}{1 + u_n}$ est ≤ 1 et comme la suite est positive, le quotient est positif VRAI
- 2) **FAUX** Contre exemple : $u_n = -1 + \frac{1}{n}$ cette suite CV vers -1 et on a $v_n = -n+1$ qui diverge

3)
$$v_{n+1} - v_n = \frac{u_{n+1}}{1 + u_{n+1}} - \frac{u_n}{1 + u_n} = \frac{u_{n+1} + u_{n+1} u_n - u_n - u_n u_{n+1}}{(1 + u_n)(1 + u_{n+1})} = \frac{u_{n+1} - u_n}{(1 + u_n)(1 + u_{n+1})}$$

La suite (u_n) étant positive, le dénominateur est positif et comme (u_n) est supposé croissante, on a $u_{n+1}-u_n>0$ donc le quotient est positif c'est à dire $v_{n+1}-v_n>0$ ce qui donne $v_{n+1} > v_n$ et la suite st croissante donc **VRAI**

- 4) Retournons l'écriture de v_n : $v_n(1+u_n)=u_n \Leftrightarrow v_n+v_nu_n=u_n$ ssi $u_n(v_n-1)=-v_n$ et donc $u_n = \frac{-v_n}{v-1}$. On peut alors facilement trouver une suite v_n qui converge et pas u_n
 - exemple : $v_n = 1 \frac{1}{n}$ qui correspond bien à l'encadrement de la question 1

PROBLEME SPECIALITE

Pour tout entier $n \ge 1$ on pose $u_n = 1! + 2! + \cdots + n!$ On donne la décomposition en facteurs premiers des dix premiers termes de la suite (u_n) :

$u_1 = 1$
$u_2 = 3$
$u_3 = 3^2$
$u_4 = 3 \times 11$
$u_5 = 3^2 \times 17$
$u_6 = 3^2 \times 97$
$u_7 = 3^4 \times 73$
$u_8 = 3^2 \times 11 \times 467$
$u_9 = 3^2 \times 131 \times 347$
$u_{10} = 3^2 \times 11 \times 40787$

- Montrer que u_n n'est jamais divisible par 2, par 5 ni par 7.
- 2. Peut-on affirmer que u_n est divisible par 11 à partir d'un certain rang?
- 3. Peut-on affirmer que, à partir d'un certain rang, u_n est divisible par 3^2 mais pas par 3^3 ?

1)

- Les nombres 2!, 3!4! ... sont tous pairs donc u_n s'écrit 1!+2K donc u_n est impair pour tout n et donc non divisible par 2
- A partir de 5!, tous les factorielles sont divisibles par 5, ils restent donc 1!+2!+3!+4!=33 d'où
 u_n = 33+5K ≠ 5K' donc non divisible par 5
- A partir de 7! tous les factorielles sont divisibles par 7 donc ils restent1!+2!+3!+4!+5!+6!=873 d'où $u_n = 873+7$ K or 873 n'est pas divisible par 7 donc u_n non plus

2)

• A partir du rang 10, u_n peut s'écrire : $u_n = u_{10} + 11! + ... + n! = 3^2 \times 11 \times 40787 + 11 \text{ K} = 11 \text{ K}'$ donc u_n divisible par 11 à partir du rang 10

3)

pour 3²=9, à partir du rang 8, u_n=u₈+9!+...+n!
 3² est alors présent dans la décomposition de u₈ et dans tous les factorielles qui suivent ainsi u_n peut s'écrire 3²×K donc est divisible par 3^2
 Or 3³ est présent dans tous les factorielles à partir de 9!. En effet

 $9!=2\times3\times4\times5\times6\times7\times8\times9=3^3\times13440$. u_n peut donc s'écrire $u_n=u_8+3^3\times K$ or $u_8=3^2\times11\times467$ non divisible par 3^3 donc u_n ne peut s'écrire $3^3\times K$ ' et donc à partir du rang 8 tous les u_n sont divisible par 3^2 mais pas par 3^3

M. PHILIPPE 3/3