Mini Bac 2

Terminales S 1 Epreuve de Mathématiques

Le vendredi 14 février

durée: 4 heures

le candidat écrira dans l'entête de sa copie le bandeau suivant :

Ex 1: / 4 pc	oints Ex 2:	/ 6 points	Ex 3: /	5 points	Ex 4:	/ 5 points
--------------	-------------	------------	---------	----------	-------	------------

Exercice 1: (4 points)

Pour chacune des propositions suivantes, indiquer si elle est vraie ou fausse et justifier la réponse choisie. Il sera attribué 1 point par réponse correctement justifiée. Une réponse non justifiée n'est pas prise en compte. Une absence de réponse n'est pas pénalisée

- 1) Proposition 1 : Toute suite croissante tend vers +∞
- 2) g est la fonction définie sur $I = \left[-\frac{1}{2}; +\infty \right]$ par $g(x) = 2x \ln(2x+1)$

<u>Proposition 2</u>: Sur I, l'équation g(x) = 2x a une unique solution : $\frac{e-1}{2}$

Proposition 3 : Le coefficient directeur de la tangente à la courbe représentative de la fonction g au

point d'abscisse
$$\frac{1}{2}$$
 est $1+\ln(4)$

3) L'espace est muni d'un repère orthonormé (O; \vec{i} , \vec{j} , \vec{k})

P et P' sont les plans respectifs d'équations respectives 2x+3y-z-11=0 et x+y+5z-11=0Proposition 4: Les plans P et P' sont perpendiculaires

Exercice 2 (6 points):

Soit f la fonction définie sur l'intervalle]0;+ ∞ [par $f(x)=\ln x$

Pour tout réel a strictement positif, on définit sur]0;+ ∞ [la fonction g_a par $g_a(x)=ax^2$

On note C la courbe représentative de la fonction f et Γ_a celle de la fonction g_a dans un repère du plan.

Le but de l'exercice est d'étudier l'intersection des courbes C et Γ_a suivant les valeurs du réel strictement positif a .

Partie A

On a construit ci-dessous (à rendre avec la copie) les courbes C , $\Gamma_{0,05}$, $\Gamma_{0,1}$, $\Gamma_{0,19}$ et $\Gamma_{0,4}$

- 1) Nommer les différentes courbes sur le graphique. Aucune justification n'est demandée
- 2) Utiliser le graphique pour émettre une conjecture sur le nombre de points d'intersection de C et Γ_a suivant les valeurs (à préciser) du réel a.

Partie B

Pour un réel a strictement positif, on considère la fonction h_a définie sur l'intervalle $]0;+\infty[$ par :

$$h_a(x) = \ln x - ax^2$$

1) Justifier que x est l'abscisse d'un point M appartenant à l'intersection de C et Γ_a si et seulement si $h_a(x)=0$

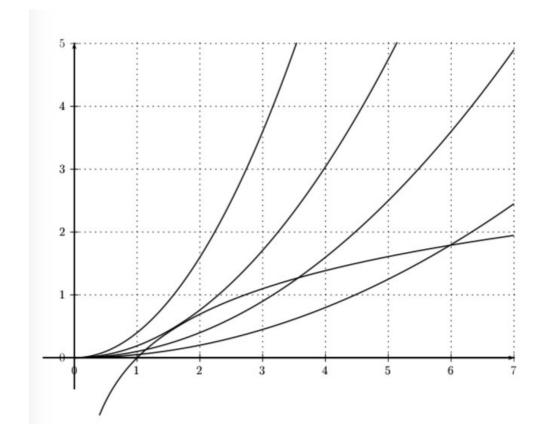
2) a) On admet que la fonction h_a est dérivable sur $]0;+\infty[$. Le tableau de variation de la fonction h_a est donné ci-dessous. Justifier par le calcul le signe de $h_a{}'(x)$ pour $x \in]0;+\infty[$

x	0		$\frac{1}{\sqrt{2}a}$		+∞
f'(x)		+	0	_	
f(x)	$-\infty$	/	$\frac{-1-\ln(2a)}{2}$		

- b) Rappeler la limite de $\frac{\ln x}{x}$ en $+\infty$. En déduire la limite de la fonction h_a en $+\infty$ On ne demande pas de justifier la limite de h_a en 0.
- 3) Dans cette question et uniquement dans cette question, on suppose a = 0,1
 - a) Justifier que dans l'intervalle $\left[0; \frac{1}{\sqrt{0,2}}\right]$, l'équation $h_{0,1}(x) = 0$ admet une unique solution

On admet que cette équation a aussi une seule solution dans l'intervalle $\left]\frac{1}{\sqrt{0,2}};+\infty\right[$

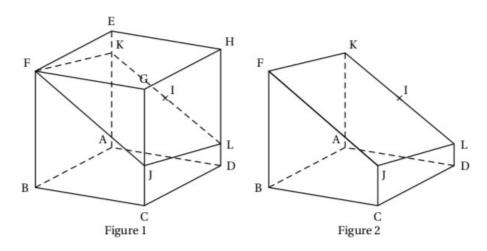
- b) Quel est le nombre de points d'intersection de C et $\Gamma_{0,1}$
- 4) Dans cette question et uniquement dans cette question, on suppose $a = \frac{1}{2e}$
 - a) Déterminer la valeur du maximum de $h_{\frac{1}{2e}}$
 - b) En déduire le nombre de points d'intersection des courbes C et $\Gamma_{\frac{1}{2e}}$. Justifier
- 5) Quelles sont les valeurs de a pour lesquelles C et $\Gamma_{\scriptscriptstyle a}$ n'ont aucun point d'intersection ? Justifier



Exercice 3 (5 points):

Soit ABCDEFGH un cube et I le centre du carré ADHE, c'est-à-dire, le milieu du segment [AH] et du segment [ED]. Soit J un point du segment [CG].

La section du cube ABCDEFGH par le plan (FIJ) est le quadrilatère FKLJ.



On se place dans le repère orthonormé (A ; \overrightarrow{AB} , \overrightarrow{AD} , \overrightarrow{AE}) On a donc A(0;0;0) , B(1;0;0) , D(0;1;0) et E(0;0;1)

Les parties A et B peuvent être traitées de manière indépendante .

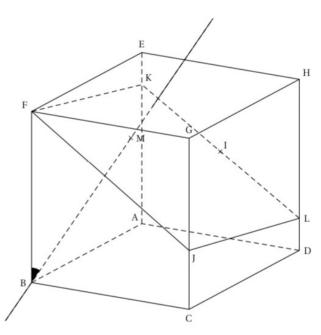
Partie A

Dans cette partie, le point J a pour coordonnées $\left(1;1;\frac{2}{5}\right)$

- 1) Démontrer que les coordonnées du point I sont $\left(0; \frac{1}{2}; \frac{1}{2}\right)$
- 2) a) Démontrer que le vecteur $\vec{n} = \begin{pmatrix} -1 \\ 3 \\ 5 \end{pmatrix}$ est un vecteur normal au plan (FIJ)
 - b) Démontrer qu'une équation cartésienne du plan (FIJ) est -x+3y+5z-4=0
- 3) Soit d la droite orthogonale au plan (FIJ) et passant par B.
 - a) Déterminer une représentation paramétrique de la droite d
 - b) On note M le point d'intersection de la droite d et du plan (FIJ).

Démontrer que $M\left(\frac{6}{7}; \frac{3}{7}; \frac{5}{7}\right)$

4) a) Calculer BM·BF
 b) En déduire une valeur approchée au degré prés de l'angle MBF.



Partie B

Dans cette partie, J est un point quelconque du segment [CG]. Ses coordonnées sont donc (1;1;a) où a est un réel de l'intervalle [0;1]

- 1) Montrer que la section du cube par le plan (FIJ) est un parallélogramme.
- 2) On admet alors que L a pour coordonnées $\left(0;1;\frac{a}{2}\right)$

Pour quelle(s) valeur(s) de a le quadrilatère FKLJ est-il un losange ?

Exercice 4 (5 points): Candidats n'ayant pas suivi l'enseignement de spécialité

On considère la suite (u_n) à valeurs réelles définie par $u_0=1$ et pour tout entier naturel n, $u_{n+1}=\frac{u_n}{u_n+8}$

1

3

4

5

6

7

8

9

10

11

12

n

0

1

2

3

4

5

un

4.17232538297E-007

6.51925802838E-009

10 8,14907252883E-010

0,1111111111

0.0002136296

0,000026703

Partie A: Conjectures

Les premières valeurs de la suite (u_n) ont été calculées avec un tableur dont voici une capture d'écran :

- Quelle formule peut-on entrer dans la cellule B3 et copier vers la bas pour obtenir les valeurs des premiers termes de la suite (u_n) ?
- 2) Quelle conjecture peut-on faire sur les variations de la suite (u_n) ?
- 3) Quelle conjecture peut-on faire sur la limite de la suite (u_n) ?
- 4) Ecrire un algorithme permettant de calculer u_{30}

Partie B: Etude générale

- 1) Démontrer par récurrence que pour tout entier naturel n, $u_n > 0$
- **2)** Etudier les variations de la suite (u_n) .
- 3) La suite (u_n) est-elle convergente? Justifier

Partie C

On définit la suite (v_n) en posant pour tout entier naturel n $v_n = 1 + \frac{7}{u_n}$

- 1) Démontrer que la suite (v_n) est une suite géométrique de raison 8
- 2) Justifier que pour tout entier naturel n , $u_n = \frac{7}{8^{n+1}-1}$
- 3) Déterminer la limite de la suite (u_n)
- 4) On cherche dans cette question le plus petit entier naturel n_0 tel que pour tout entier naturel n supérieur ou égal à n_0 , $u_n < 10^{-18}$ Justifier l'existence d'un tel entier n_0 et déterminer sa valeur