
DM Terminales S

<u>Préambule</u> Déterminer selon les valeurs de x, le signe de $A = x^3 - 1$

I- On considère la fonction f_1 définie sur \mathbb{R} par $f_1(x) = x e^{-x^2}$. On appelle C_1 sa courbe représentative

- a) Etudier la parité de f_1
- b) Déterminer le sens de variation de la fonction f_1
- c) Calculer la limite de f_1 en $+\infty$ (on pourra poser $X = x^2$)
- d) 0n appelle Δ la droite d'équation y = x . Etudier la position de C_1 par rapport à Δ
- e) Tracer C_1 et Δ sur une feuille de papier millimétré (unité graphique 5 cm)

II- On considère maintenant f_4 la fonction définie sur \mathbb{R} par $f_4(x) = x^4 e^{-x^2}$ de courbe représentative C_4

- a) Etudier la parité de f 4
- b) Déterminer le sens de variation de f_4
- b) Déterminer les positions relatives de C₁ et C₄
- c) Tracer C₄ dans le même repère que C₁

III- On considère maintenant f_n la fonction définie sur \mathbb{R} par $f_n(x) = x^n e^{-x^2}$ de courbe représentative C_n .

- a) Montrer que pour tout entier $n \ge 1$, C_n admet un maximum. On notera S_n ce maximum et on précisera ses coordonnées. O, placera S_2 , S_3 et S_4 sur la figure
- b) Montrer que pour tout n, C_n passe par S_2 .