DS1 Terminale: Thème: suite et récurrence

Mercredi 10 septembre

Exercice 1

Un patient doit prendre toutes les heures une dose de 2 ml d'un médicament .

On introduit la suite (u_n) telle que le terme u_n représente la quantité de médicament, exprimée en ml présente dans l'organisme immédiatement après n prises de médicament.

On a $u_1 = 2$ et pour tout entier entier naturel n strictement positif : $u_{n+1}=2+0.8u_n$

Partie A

En utilisant ce modèle, un médecin cherche à savoir à partir de combien de prises du médicament la quantité présente dans l'organisme du patient est strictement supérieure à 9 ml.

1) Calculer la valeur de u_2

$$u_2 = 2+0.8u_1 = 2+1.6 = 3.6$$

2) Montrer par récurrence que $u_n = 10 - 8 \times 0.8^{n-1}$ pour tout entier naturel n > 0.

Ini : n = 1

 $u_1 = 2$ et $10-8\times0.8^{1-1} = 10-8 = 2 = u_1$ donc la relation est vraie au rang 1

SQ un entier n > 0 tel que $u_n = 10 - 8 \times 0.8^{n-1}$

$$DQ u_{n+1} = 10 - 8 \times 0.8^n$$

On sait que $u_n = 10 - 8 \times 0.8^{n-1}$

$$0.8 \times u_n = 0.8 \times 10 - 8 \times 0.8^n = 8 - 8 \times 0.8^n$$

$$0.8u_n + 2 = 10 - 8 \times 0.8^n$$

La relation est donc héréditaire or elle est vraie au rang 1 donc elle est vraie pour tout n > 0

3) Conjecturer la limite de la suite (u_n) et en donner une interprétation dans le contexte de l'exercice.

On peut conjecturer que la limite est de 10 donc le patient n'aura jamais plus de 10 ml dans la sang

4) A l'aide de votre calculatrice, déterminer à partir de combien de prises de médicament la quantité de médicament présente dans l'organisme du patient sera strictement supérieure à 9 ml .

$$u_{10} = 8,92$$
 $u_{11} = 9,14$ donc à partir de 11 injections

Partie B

En utilisant la même modélisation, le médecin s'intéresse à la quantité moyenne de médicament présente dans l'organisme du malade au cours de temps .

On définit pour cela la suite (S_n) définie pour tout entier naturel n strictement positif par :

$$S_n = \frac{u_1 + u_2 + \ldots + u_n}{n}$$

On admet que (S_n) est croissante

Page 1 / 4 M PHILIPPE

1) Calculer S₂

$$S_2 = \frac{u_1 + u_2}{2} = \frac{2 + 3.6}{2} = 2.8$$

2) Montrer que pour tout entier naturel n strictement positif,

$$u_1 + u_2 + \dots + u_n = 10n - 40 + 40 \times 0,8^n$$

$$u_1 + u_2 + \dots + u_n = 10 - 8 \times 0,8^{1-1} + 10 - 8 \times 0,8^{2-1} + \dots + 10 - 8 \times 0,8^{n-1}$$

$$= 10 + 10 + \dots + 10 - 8 \times (0,8^0 + 0,8^1 + \dots + 0,8^{n-1})$$

$$= 10n - 8 \times \frac{1 - 0,8^n}{1 - 0.8} = 10n - 40(1 - 0,8^n) = 10n - 40 + 40 \times 0,8^n$$

3) On donne la fonction mystere suivante, écrite en langage python

Dans le contexte de l'exercice, que représente la valeur renvoyée par la saisie de mystere(9) ?

Cette procédure renvoie le plus petit entier naturel n pour lequel S > 9

Exercice 2

L'objectif de cet exercice est d'étudier la suite (u_n) définie pour tout entier nautrel n par :

Partie A conjecture

1. Recopier et compléter le tableau ci-dessous . Aucune justification n'est demandéE

n	0	1	2	3	4	5
u_n	0	0,5	0,5	0,375	0,25	0,15625

2. Conjecturer la limite de la suite (u_n)

la limite semble être égale à zéro

Page 2 / 4 M PHILIPPE

Partie B Etude d'une suite auxiliaire

Soit (w_n) la suite définie pour tout eniter naturel n par : $w_n = u_{n+1} - \frac{1}{2} u_n$

1) Calculer w_0

$$\mathbf{w}_0 = u_1 - \frac{1}{2} u_0 = 0,5$$

2) Démontrer que la suite (w_n) est géométrique de raison $\frac{1}{2}$

$$\begin{split} w_{n+1} &= u_{n+2} - \frac{1}{2} u_{n+1} = u_{n+1} - \frac{1}{4} u_n - \frac{1}{2} u_{n+1} = \frac{1}{2} u_{n+1} - \frac{1}{4} u_n \\ &= \frac{1}{2} \left(u_{n+1} - \frac{1}{2} u_n \right) \\ &= \frac{1}{2} w_n \text{ donc géométrique de raison } \frac{1}{2} \end{split}$$

3) Pour tout entier naturel n, exprimer w_n en fonction de n

$$w_n = w_0 \times q^n = 0.5 \times \left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^{n+1}$$

4) Montrer que pour tout entier naturel n , $u_{n+1} = \left(\frac{1}{2}\right)^{n+1} + \frac{1}{2}u_n$

$$w_n = u_{n+1} - \frac{1}{2}u_n$$
 donc $u_{n+1} = w_n + \frac{1}{2}u_n = \left(\frac{1}{2}\right)^{n+1} + \frac{1}{2}u_n$

5) Démontrer par récurrence que pour tout n , $u_n = n \left(\frac{1}{2}\right)^n$

ini :
$$n = 0$$
 $0 \times \left(\frac{1}{2}\right)^0 = 0$ or $u_0 = 0$ donc relation vraie au rang 0

SQ il existe n tel que $u_n = n \left(\frac{1}{2}\right)^n$

$$DQ u_{n+1} = (n+1) \left(\frac{1}{2}\right)^{n+1}$$

On sait que $u_n = n \left(\frac{1}{2}\right)^n$ donc

$$u_{n+1} = \left(\frac{1}{2}\right)^{n+1} + \frac{1}{2}u_n = \left(\frac{1}{2}\right)^{n+1} + \frac{1}{2} \times n \times \left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^{n+1} + n \times \left(\frac{1}{2}\right)^{n+1} = (n+1)\left(\frac{1}{2}\right)^{n+1}$$

la relation est donc héréditaire etc.....

Partie C Etude de la suite (u_n)

1) Montrer que la suite (u_n) est décroissante à partir du rang 1

Etudions le signe de $u_{n+1}-u_n$

$$u_{n+1} - u_n = (n+1) \left(\frac{1}{2}\right)^{n+1} - n \left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^n \left((n+1) \times \left(\frac{1}{2}\right) - n\right) = \left(\frac{1}{2}\right)^n \frac{1-n}{2} \wedge n$$

pour n > 1, 1-n est négatif donc $u_{n+1} - u_n < 0$ cad $u_{n+1} < u_n$ et la suite est décroissante à partir du rang 1

2) On admet que la limite de la suite (u_n) est solution de l'équation $\ell = \ell - \frac{1}{4}\ell$.

La conjecture de la partie A est-elle vérifiée ?

L'équation a pour solution 0 donc la conjecture est vérifiée

Page 4 / 4 M PHILIPPE