DS1 Terminale: Thème: suite et récurrence

Mercredi 10 septembre environ 1 h

Exercice 1

Un patient doit prendre toutes les heures une dose de 2 ml d'un médicament .

On introduit la suite (u_n) telle que le terme u_n représente la quantité de médicament, exprimée en ml présente dans l'organisme immédiatement après n prises de médicament.

On a $u_1 = 2$ et pour tout entier entier naturel n strictement positif : $u_{n+1} = 2 + 0.8 u_n$

Partie A

En utilisant ce modèle, un médecin cherche à savoir à partir de combien de prises du médicament la quantité présente dans l'organisme du patient est strictement supérieure à 9 ml.

- 1) Calculer la valeur de u_2
- 2) Montrer par récurrence que $u_n = 10 8 \times 0.8^{n-1}$ pour tout entier naturel n > 0.
- 3) Conjecturer la limite de la suite (u_n) et en donner une interprétation dans le contexte de l'exercice.
- 4) A l'aide de votre calculatrice, déterminer à partir de combien de prises de médicament la quantité de médicament présente dans l'organisme du patient sera strictement supérieure à 9 ml.

Partie B

En utilisant la même modélisation, le médecin s'intéresse à la quantité moyenne de médicament présente dans l'organisme du malade au cours de temps .

On définit pour cela la suite (S_n) définie pour tout entier naturel n strictement positif par :

$$S_n = \frac{u_1 + u_2 + \ldots + u_n}{n}$$

On admet que (S_n) est croissante

- 1) Calculer S₂
- 2) Montrer que pour tout entier naturel n strictement positif,

$$u_1 + u_2 + ... + u_n = 10n - 40 + 40 \times 0.8^n$$

3) On donne la fonction mystere suivante, écrite en langage python

Dans le contexte de l'exercice, que représente la valeur renvoyée par la saisie de mystere(9) ?

Page 1 / 2 M PHILIPPE

Exercice 2

L'objectif de cet exercice est d'étudier la suite (u_n) définie pour tout entier nautrel n par :

$$\begin{cases} u_0 = 0 \\ u_1 = \frac{1}{2} \\ u_{n+2} = u_{n+1} - \frac{1}{4} u_n \end{cases}$$

Partie A conjecture

1. Recopier et compléter le tableau ci-dessous . Aucune justification n'est demandéE

n	0	1	2	3	4	5
u_n						

2. Conjecturer la limite de la suite (u_n)

Partie B Etude d'une suite auxiliaire

Soit (w_n) la suite définie pour tout eniter naturel n par : $w_n = u_{n+1} - \frac{1}{2}u_n$

- 1) Calculer w_0
- 2) Démontrer que la suite (w_n) est géométrique de raison $\frac{1}{2}$
- 3) Pour tout entier naturel n, exprimer w_n en fonction de n
- 4) Montrer que pourtout entier naturel n , $u_{n+1} = \left(\frac{1}{2}\right)^{n+1} + \frac{1}{2}u_n$
- 5) Démontrer par récurrence que pour tout n , $u_n = n \left(\frac{1}{2}\right)^n$

Partie C Etude de la suite (u_n)

- 1) Montrer que la suite (u_n) est décroissante à partir du rang 1
- 2) On admet que la limite de la suite (u_n) est solution de l'équation $\ell = \ell \frac{1}{4}\ell$. La conjecture de la partie A est-elle vérifiée ?