DS Géométrie dans l'espace

Exercice 1 b d c d

QCM indiquer la bonne réponse sur la copie

L'espace est rapoorté à un repère orthonormé (O; \vec{i} , \vec{i} , \vec{k})

On considère:

- La droite D passant par A(1;1;-2) et B(-1;3;2)
- La droite D' a pour représentation paramétrique $\begin{cases} x = -4 + 3t \\ y = 6 3t \\ z = 8 6t \end{cases}$ avec $t \in \mathbb{R}$.

Question 1 Parmi les pooints suivants, lequel appartient à la droite D'?

a)
$$M_1$$
 $(-1;3;-2)$

a)
$$M_1$$
 $(-1;3;-2)$ b) M_2 $(11;-9;-22)$ c) M_3 $(-7;9;2)$ d) M_4 $(-2;3;4)$

c)
$$M_3$$
 $(-7:9:2)$

d)
$$M_4$$
 (-2;3;4)

Question 2 Une représentation paramètrique de la droite (AB) est :

a)
$$\begin{cases} x=3+t \\ y=1+t \\ z=-6+2t \end{cases}$$

a)
$$\begin{cases} x=3+t \\ y=1+t \\ z=-6+2t \end{cases}$$
 b) $\begin{cases} x=3-2t \\ y=-1+2t \\ z=6-4t \end{cases}$ c) $\begin{cases} x=1-t \\ y=1+t \\ z=2+2t \end{cases}$ d) $\begin{cases} x=3-t \\ y=-1+t \\ z=-6+2t \end{cases}$

c)
$$\begin{cases} x = 1 - t \\ y = 1 + t \\ z = 2 + 2 t \end{cases}$$

d)
$$\begin{cases} x = 3 - t \\ y = -1 + t \\ z = -6 + 2 \end{cases}$$

Question 3 Un vecteur directeur de la droite D' est :

a)
$$\vec{u}_1 \begin{pmatrix} -4 \\ 6 \\ 8 \end{pmatrix}$$
 b) $\vec{u}_2 \begin{pmatrix} 3 \\ 3 \\ 6 \end{pmatrix}$ c) $\vec{u}_3 \begin{pmatrix} 3 \\ -3 \\ -6 \end{pmatrix}$ d) $\vec{u}_4 \begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix}$

b)
$$\vec{u}_2$$
 $\begin{pmatrix} 3 \\ 3 \\ 6 \end{pmatrix}$

c)
$$\overrightarrow{u}_3$$
 $\begin{pmatrix} 3 \\ -3 \\ -6 \end{pmatrix}$

d)
$$\vec{u}_4 \begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix}$$

Question 4 Les droites D et D' sont :

a) sécantes

- b) strictement parallèles
- c) non coplanaires
- d) confondues

Exercice 2

On considère un cube ABCDEFGH. Le point I est le milieu du segment [EF], le point J est le milieu du segment [BC] et le point K est le milieu du segment [AE].

1) Les droites (AI) et (KH) sont-elles parallèles ? Justifier votre réponse.

Non la droite (HK) coupe le plan (ABFE) en K sur la droite (AE). Or (AI) qui est une droite du plan

Н

(ABFE) coupe la droite (AI) en A ≠ K donc les droites sont non coplanaires

Dans la suite, on se place dans le repère orthonomé (A ; \overrightarrow{AB} , \overrightarrow{AD} , \overrightarrow{AE})

2) a) Donner les coordonnées des points A, E, C, I et J

$$A(0;0;0)$$
 $E(0;0;1)$ $C(1;1;0)$ $I(\frac{1}{2};0;1)$ $J(1;\frac{1}{2};0)$

b) Calculer les coordonnées des vecteurs \vec{IJ} , \overrightarrow{AE} et \overrightarrow{AC}

$$\vec{IJ}$$
 $\left(\frac{1}{2}; \frac{1}{2}; -1\right)$ \vec{AE} $(0;0;1)$ \vec{AC} $(1;1;0)$

c) En déduire les réels x et y tels que $\overrightarrow{IJ} = x \overrightarrow{AE} + y \overrightarrow{AC}$

$$-1\overline{AE} + \frac{1}{2}\overline{AC}$$
 $\left(\frac{1}{2}; \frac{1}{2}; -1\right)$ donc $\overline{IJ} = -\overline{AE} + \frac{1}{2}\overline{AC}$

d) Que peut-on en déduire pour les vecteurs \vec{IJ} , \overrightarrow{AE} et \overrightarrow{AC} Les trois vecteurs sont donc coplanaires

On considère les droites d_1 et d_2 de représentations paramétriques :

$$d_1: \begin{cases} x=3+t \\ y=8-2t \\ z=-2+3t \end{cases} \quad \text{t} \in \mathbb{R} , \quad \text{et} \ d_2: \begin{cases} x=4+k \\ y=1+k \\ z=8+2k \end{cases} \quad k \in \mathbb{R}$$

3) Les droites $\,d_{\,1}\,$ et $\,d_{\,2}\,$ sont-elles parallèles ? Justifier votre réponse

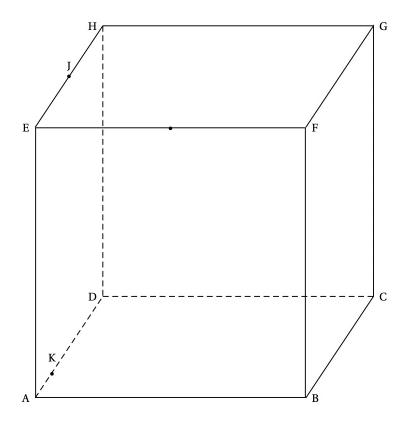
vecteur directeur de d_1 : \vec{u}_1 (1;-2;3)

vecteur directeur de d_2 : $\overrightarrow{u_2}$ (1;1;2)

 $\frac{X_{\vec{u}_1}}{X_{\vec{u}_2}} = 1 \neq -2 = \frac{y_{\vec{u}_1}}{y_{\vec{u}_2}}$ donc les vecteurs ne sont pas colinéaires et les droites ne sont pas parallèles

4) Quelle est la position relative de ces deux droites ?

On cherche à résoudre le système :
$$\begin{cases} 3+t=4+k & t=k+1 \\ 8-2t=1+k \\ -2+3t=8+2k \end{cases} \begin{cases} t=k+1 \\ 8-2k-2=1+k \\ -2+3k+3=8+2k \end{cases} \begin{cases} t=k+1 \\ k=\frac{5}{3} \\ k=7 \end{cases}$$


k n'est pas unique donc les droites ne sont pas coplanaires

Exercice 3

On considère un cube ABCDEFGH d'arête de longueur 1.

On note J le milieu du segment [EH], I le centre de la face (ABFE) et K le point de [AD] tel que $\overrightarrow{AK} = \frac{1}{4} \overrightarrow{AD}$

- 1) Le plan (FHK) coupe la droite (AE) en un point que l'on note M . Construire le point M.
- 2) Constuire la section du cube par le plan (IJM)

