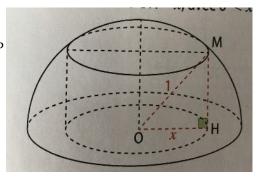
DM2 Terminale Spécialité


Exercice 1: Etudier la convexité des deux fonctions proposées

- 1) f est définie sur [0;10] par $f(x) = \frac{1}{e^{-0.6} + e^{4.5 x}}$
- 2) g est définie sur \mathbb{R} par $g(x) = xe^{-x^2}$

Exercice 2:

On considère un cylindre droit dans une demi-sphère de rayon 1 mètre. Le cylindre et la sphère ont le même plan P de base et le même axe de symétrie. Soit M un point de l'intersection de la sphère et du cylindre et H le projeté orthogonal de M sur le plan P.

L'unité est le mètre . On note OH = x avec $0 \le x \le 1$

- 1) Déterminer, en fonction de x, le volume V du cylindre
- 2) a) Etudier les variations de la fonction V définie à la question 1)
 - b) En déduire les dimensions OM et OH du cylindre de plus grand volume ainsi que la valeur exacte en m^3 de ce volume
- 3) On souhaite déterminer la plus petite valeur de OH à 0,001 près pour laquelle le volume du cylindre dépasse 1 m^3 . Ecrire un algorithme permettant de répondre à la question et donner cette valeur de OH

Exercice 3: Soit f la fonction définie sur \mathbb{R} par $f(x)=10x^2e^{nx-1}$ où n est un entier naturel On note C_n la courbe représentative de f.

Montrer que C_n admet deux points d'inflexion