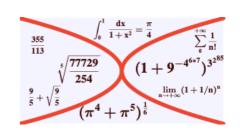
Terminale B

Mardi 15 septembre 2020 1 heure



Exercice 1:

Soit (u_n) la suite définie par $u_0=0$ et pour tout entier naturel n, $u_{n+1}=u_n+2n+2$

Démontrer, à l'aide d'un raisonnement par récurrence, que pour tout entier naturel n, $u_n = n^2 + n$

Initialisation: n = 0

 $0^2+0=0=u_0$ donc la relation est vraie au rang 0.

SQ il existe n tel que $u_n = n^2 + n$

DQ
$$u_{n+1} = (n+1)^2 + (n+1) = n^2 + 2n + 1 + n + 1 = n^2 + 3n + 1$$

On sait que $u_n = n^2 + n$ donc $u_n + 2n + 2 = n^2 + n + 2n + 2$ ce qui donne $u_{n+1} = n^2 + 3n + 2$ la relation est donc héréditaire or elle est vraie au rang 0 donc elle est vraie pour tout entier n

Exercice 2: Soit (u_n) la suite définie par $u_0=1$ et pour tout entier naturel n, $u_{n+1}=\frac{1}{4}u_n+3$

1) Calculer u_1 et u_2

$$u_1 = \frac{1}{4} u_0 + 3 = \frac{1}{4} \times 1 + 3 = \frac{7}{4}$$

$$u_1 = \frac{1}{4}u_0 + 3 = \frac{1}{4} \times 1 + 3 = \frac{7}{4}$$
 $u_2 = \frac{1}{4}u_1 + 3 = \frac{1}{4} \times \frac{7}{4} + 3 = \frac{55}{16}$

2) Démontrer par récurrence que pour tout entier naturel n , $u_n < 4$

Initialisation : n=0 $u_0=1<4$ relation varie au rang 4

SQ il existe un entier n tel que $u_n < 4$

DQ $u_{n+1} < 4$

On sait que $u_n < 4$

$$\frac{1}{4}u_n < \frac{1}{4} \times 4$$

$$\frac{1}{4}u_n + 3 < 1 + 3$$

$$u_{n+1} < 4$$

La relation est donc héréditaire or elle est vraie au rang 0 donc elle vraie pour tout entier n

3) En utilisant la question précédente, démontrer que la suite (u_n) est croissante Etudions le signe de $u_{n+1}-u_n$

$$u_{n+1} - u_n = \frac{1}{4}u_n + 3 - u_n = -\frac{3}{4}u_n + 3$$

On sait que $u_n < 4$ donc $-\frac{3}{4}u_n > -\frac{3}{4} \times 4$ c'est à dire $-\frac{3}{4}u_n > -3$ d'où $-\frac{3}{4}u_n + 3 > 0$ c'est à dire $u_{n+1}-u_n>0$ d'où $u_{n+1}>u_n$ et la suite est croissante

- 4) Soit (v_n) la suite définie, pour tout entier naturel n, par $v_n = u_n 4$
 - a) Démontrer que la suite (v_n) est géométrique de raison $\frac{1}{4}$

Il faut démontrer que $v_{n+1} = \frac{1}{4} v_n$

$$v_{n+1} = u_{n+1} - 4$$

$$v_{n+1} = \frac{1}{4}u_n + 3 - 4$$

$$v_{n+1} = \frac{1}{4}u_n - 1$$

$$v_{n+1} = \frac{1}{4} (u_n - 4)$$

$$v_{n+1} = \frac{1}{4} v_n$$

donc suite géométrique de raison $\frac{1}{4}$ de premier terme $v_0 = u_0 - 4 = 1 - 4 = -3$

b) En déduire que pour tout entier naturel n , $u_n = -3\left(\frac{1}{4}\right)^n + 4$

On sait que $v_n = v_0 \times q^n$ donc $v_n = -3 \left(\frac{1}{4}\right)^n$

$$u_n - 4 = -3\left(\frac{1}{4}\right)^n$$

$$u_n = -3\left(\frac{1}{4}\right)^n + 4$$

5) Soit S_n la suite définie par pour tout entier n par $S_n = \sum_{k=0}^n u_k = u_0 + u_1 + u_2 + ... + u_n$

Démontrer que $S_n = \left(\frac{1}{4}\right)^n + 4n$

$$S_{n} = \left(-3 \times \left(\frac{1}{4}\right)^{0} + 4\right) + \left(-3 \times \left(\frac{1}{4}\right)^{1} + 4\right) + \left(-3 \left(\frac{1}{4}\right)^{2} + 4\right) + \dots - \left(3 \left(\frac{1}{4}\right)^{n} + 4\right)$$

$$S_n = -3\left(1 + \left(\frac{1}{4}\right)^1 + \left(\frac{1}{4}\right)^2 + \dots + \left(\frac{1}{4}\right)^n\right) + 4 + 4 + \dots + 4$$

$$S_n = -3 \times \frac{1 - \left(\frac{1}{4}\right)^{n+1}}{1 - \frac{1}{4}} + 4 \times (n+1)$$

$$S_n = -3 \times \frac{1 - \left(\frac{1}{4}\right)^{n+1}}{\frac{3}{4}} + 4n + 4$$

$$S_n = -4 \times \left(1 - \left(\frac{1}{4}\right)^{n+1}\right) + 4n + 4$$

$$S_n = -4 + 4 \times \left(\frac{1}{4}\right)^{n+1} + 4n + 4 = \left(\frac{1}{4}\right)^n + 4n$$

Exercice 3:

Voici un fonction écrite en langage python :

```
def somme(N):

S = 0

for i in range(N):

S = S + i \times (N - i)

return S
```

Quel résultat s'affiche dans la console si l'on entre l'instruction somme(3) ? somme(4) ?

somme(3): donc N = 3
 somme(4): donc N = 4

$$S = 0$$
 $S = 0$
 $i = 0$
 $i = 0$
 $S = 0 + 0 \times (3 - 0) = 0$
 $S = 0 + 0 \times (4 - 0) = 0$
 $i = 1$
 $i = 1$
 $S = 0 + 1 \times (4 - 0) = 0$
 $i = 1$
 $S = 0 + 1 \times (4 - 1) = 0$
 $i = 1$
 $S = 0 + 1 \times (4 - 1) = 0$
 $i = 2$
 $S = 0 + 1 \times (4 - 1) = 0$
 $i = 2$
 $S = 0 + 1 \times (4 - 1) = 0$
 $i = 2$
 $S = 3 + 2 \times (4 - 2) = 7$
 $i = 3$
 $S = 7 + 3 \times (4 - 3) = 10$