Limites de suites

I- Limite d'une suite

a) Limite finie

 Définition
 Soit (Un) une suite de nombres réels.

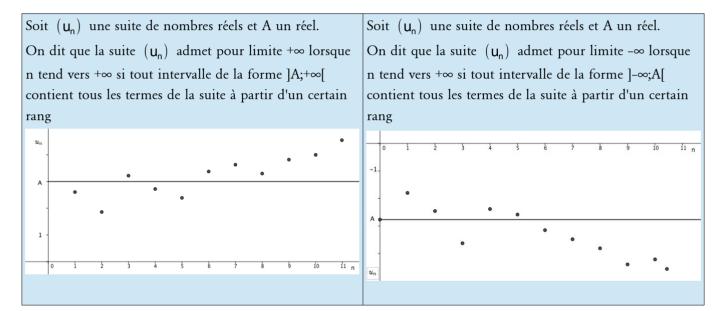
 On dit que la suite (Un) admet pour limite ℓ quand n

 tend vers +∞, lorsque tout intervalle]a ;b[contenant ℓ contient tous les termes de la suite à partir d'un certain rang.

 On dit alors que la suite est convergente vers ℓ et on note : lim n→+∞ un = ℓ

b) Limite infinie

Définitions



Remarques:

- Une suite convergente ne possède qu'une seule limite (voir démonstration en III)
- Une suite qui n'est pas convergente est dite divergente et sa limite est +∞, -∞ ou pas de limite
- Ces définitions seront très utiles dès qu'il faudra démontrer des propriétés sur les limites de suites. Cependant dans la pratique, il existe des méthodes plus intuitives pour déterminer une limite :

II- Opérations sur les limites

a) Limites d'une somme

Les suites (u_n) et (v_n) ayant une limite (finie ou infinie), la suite $u_n + v_n$ admet une limite dans chacun des cas décrits dans le tableau ci-dessous :

$\lim_{lim} v_n$	ℓ	+ ∞	- ∞
ℓ '	ℓ + ℓ '	+∞	- ∞
+∞	+∞	+∞	Forme Indéterminée (F I)
- ∞	- ∞	FI	-∞

b) Limite d'un produit

Les suites (u_n) et (v_n) ayant une limite (finie ou infinie), la suite $u_n \times v_n$ admet une limite dans chacun des cas décrits dans le tableau ci-dessous :

lim u _n	$\ell \neq 0$	0	+ ∞	- ∞
ℓ'≠0	l * l°	0	± ∞	± ∞
0	0	0	F I	F I
+ ∞	± ∞	FΙ	+ ∞	- ∞
- ∞	± ∞	FΙ	- 8	+ ∞

c) Limite d'un quotient

Les suites (u_n) et (v_n) ayant une limite (finie ou infinie), la suite $\frac{u_n}{v_n}$ admet une limite dans chacun des cas décrits dans le tableau ci-dessous :

lim U _n	$\ell \neq 0$	0	+ ∞	- ∞
$\ell' \neq 0$	<i>lIl</i> '	0	± ∞	± ∞
0	± 8	FΙ	± ∞	±∞
+∞	0	0	FI	F I
-∞	0	0	FI	F I

d) Des limites à connaître

Compléter les limites suivantes qui utilise votre bon sens :

$$\lim_{n \to +\infty} \frac{1}{n} = 0$$

$$\lim_{n \to +\infty} \frac{1}{n^2} = 0$$

$$\lim_{n \to +\infty} n = +\infty$$

$$\lim_{n\to+\infty}\sqrt{n}_{=+\infty}$$

$$\lim_{n \to +\infty} \frac{1}{n} = 0 \qquad \qquad \lim_{n \to +\infty} \frac{1}{n^2} = 0 \qquad \qquad \lim_{n \to +\infty} n = +\infty \qquad \qquad \lim_{n \to +\infty} \sqrt{n} = +\infty \qquad \qquad \lim_{n \to +\infty} (-1)^n = \text{pas de limite}$$

•
$$\lim_{n\to +\infty} q^n = ?$$

Théorème (BAC) Soit la suite (q^n) définie sur \mathbb{N} , avec $q \in \mathbb{R}$.

• Si q > 1 alors $\lim_{n \to +\infty} q^n = +\infty$

• Si -1 < q < 1 alors $\lim_{n \to +\infty} q^n = 0$

• Si q = 1 alors $\lim_{n \to +\infty} q^n = 1$

• Si $q \le -1$ alors la suite (q^n) n'a pas de limite

La démonstration de ce théorème dans le cas q > 1 sera vu en IV b).

Application

Ce théorème est utile pour déterminer la limite d'une suite géométrique de raison q et de premier terme u₀ car on sait alors $u_n = u_0 \times q^n$ d'où selon le signe de u_0 et la valeur de q on peut en déduire la limite de la suite (u_n)

III) Propriétés sur les limites

On a vu en exercice le théorème suivant :

Théorème 1 : Si une suite (U_n) converge, sa limite est unique

Théorème 2 (BAC):

Si (U_n) est une suite croissante et converge vers un réel l alors elle est majorée par l

<u>Démonstration</u>: Raisonnons par l'absurde

Supposons qu'il existe un rang n_0 tel que $u_{n_0} > 1$

L'intervalle I =]l-1; u_{n_0} [est un intervalle contenant l . D'où comme la suite converge vers l , il existe un rang à partir duquel tous les termes de la suite sont dans I mais la suite (u_n) est croissante donc

pour
$$n \ge n_0$$
, $u_n \ge u_{n_0}$ d'où $u_n \notin I$

Il est donc impossible que I contienne tous les termes de la suite à partir d'un certain rang . L'hypothèse de départ est donc fausse et la suite est majorée par l

Théorème: Si une suite (U_n) converge, elle est bornée

Démonstration

Soit (u_n) une suite qui CV vers l alors tout intervalle ouvert contenant l contient tous les termes de la suite à partir d'un certain rang . Prenons l'intervalle] l-1; l+1 [

Donc pour tout $n \ge n_0$ $u_n \in]1-1;1+1[$. Ainsi pour $n \ge n_0$, u_n est bornée par 1-1 et par 1+1

Pour $n \le n_0$, nous avons alors affaire à un nombre limitée de termes de l'ensemble $\{u_0, u_1, \dots, u_{n_0}\}$

Il y a donc un plus grand et un plus petit terme dans cet ensemble d'où la suite est aussi bornée .

Donc pour tout $n \in \mathbb{N}$, u_n est bornée

<u>Remarque</u>:

- La réciproque de ce théorème est fausse. Contre exemple avec la suite U_n = (-1)ⁿ bornée mais non convergente
- La contraposée de ce théorème nous permet d'affirmer qu'une suite non bornée est divergente

IV- Les théorèmes des gendarmes et de comparaisons

a) Le théorème des gendarmes (Admis)

```
Soit (u_n), (v_n) et (w_n) trois suites numériques vérifiant à partir d'un certain rang : u_n \le v_n \le w_n
Si \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} w_n = 1 avec 1 \in \mathbb{R} alors \lim_{n \to +\infty} v_n = 1
```

Un théorème très utile pour déterminer une limite car il est fréquent d'encadrer une suite par deux autres qui sont convergentes

Exemple: Déterminer la limite de $u_n = \frac{\sin n}{n}$

M. Philippe Page 3 / 4

b) Les théorèmes de comparaisons

Les théorèmes de comparaisons (BAC):

Soit (u_n) et (v_n) deux suites numériques telles que $u_n \le v_n$ à partir d'un certain rang.

•
$$Si \lim_{n \to +\infty} u_n = + \infty \text{ alors } \lim_{n \to +\infty} v_n = + \infty$$

•
$$Si \lim_{n \to +\infty} v_n = -\infty \text{ alors } \lim_{n \to +\infty} u_n = -\infty$$

Démonstration du 1)

Par hypothèse, la suite (u_n) tend vers $+\infty$ donc pour $A \in \mathbb{R}$, l'intervalle $]A;+\infty[$ contient tous les termes de la suite à partir d'un certain rang n_0 cad pour tout $n \ge n_0$, $u_n > A$

On sait aussi que $v_n \ge u_n$ à partir d'un certain rang n_1

Notons alors N le plus grand des entiers no et no. On a alors :

Pour $n \ge N$, $v_n \ge u_n > A$ d'où l'intervalle]A;+ ∞ [contient tous les termes de la suite (v_n) à partir du rang N.

Comme ce raisonnement s'applique pour tous réel $A \in \mathbb{R}$, la suite (v_n) tend vers $+\infty$

Une application (BAC):
$$\lim_{n \to +\infty} q^n = +\infty \text{ quand } q > 1$$

On utilise pour cela l'inégalité de Bernoulli :

pour tout n et pour tout
$$a > 0$$
, on a : $(1+a)^n \ge 1+na$

Comme q > 1, on peut écrire q = 1 + a pour tout $n \in \mathbb{N}$ avec a > 0. D'après l'inégalité de Bernoulli, on a donc $q^n \ge 1 + na$ pour tout $n \in \mathbb{N}$.

D'où comme $\lim_{n \to +\infty} 1 + na = +\infty$ car a > 0 d'après les théorèmes de comparaisons, on en déduit que $\lim_{n \to +\infty} q^n = +\infty$

V- Théorèmes de convergence monotone

Théorème (BAC)

- Si (U_n) est une suite croissante et non majorée alors $\lim_{n \to +\infty} u_n = +\infty$
- Si (U_n) est une suite **décroissante et non minorée** alors $\lim_{n \to +\infty} u_n = -\infty$

<u>Démonstration</u>:

Démontrons le premier théorème

Soit (U_n) une suite croissante et non majorée.

Si une suite est majorée, il existe un réel $M\in \mathbb{R}$, tel que pour tout $n\in \mathbb{N}$, $U_n\leq M$

A noter:

Le contraire de « il existe » est « quelque soit » et vice versa

Ainsi la suite n'étant pas majorée, pour tout $M \in \mathbb{R}$, il existe $n \in \mathbb{N}$ tel que $U_n > M$

Cependant, la suite étant croissante, pour tout p > n, on a U_p > U_n ainsi U_p > M

On a donc prouvé tous les termes de la suite sont dans l'intervalle]M ;+∞[à partir d'un certain rang d'où le résultat

Théorème (admis)

- Si (U_n) est une suite **croissante et majorée** alors elle converge
- Si (U_n) est une suite décroissante et minorée alors elle converge

Un théorème très utile pour assurer la convergence d'une suite . Cependant, il a ses limites car il ne nous renseigne pas sur la valeur de cette limite

M. Philippe Page 4 / 4