Exercice nº 6 (enseignement obligatoire)

Le plan est rapporté à un repère orthonormal $(0, \vec{i}, \vec{j})$.

Soit f la fonction définie sur ${\mathbb R}$ par :

$$f(x) = \frac{1}{2}e^{2x} - 2, 1e^x + 1, 1x + 1, 6$$

- Faites apparaître sur l'écran de votre calculatrice graphique la courbe représentative de cette fonction dans la fenêtre −5 ≤ x ≤ 4, −4 ≤ y ≤ 4. Reproduire l'allure de la courbe obtenue sur votre copie.
- 2. D'après cette représentation graphique, que pourrait-on conjecturer :
 - **a.** Sur les variations de la fonction *f* ?
 - **b.** Sur le nombre de solutions de l'équation f(x) = 0?
- **3.** On se propose maintenant d'étudier la fonction f.
 - **a.** Résoudre dans \mathbb{R} l'inéquation $e^{2x} 2$, $1e^x + 1$, $1 \ge 0$ (on pourra poser $X = e^x$).
 - **b.** Étudier les variations de la fonction f.
 - **c.** Déduire de cette étude le nombre de solutions de l'équation f(x) = 0.
- 4. On veut représenter, sur l'écran d'une calculatrice, la courbe représentative de la fonction f sur l'intervalle [-0,05; 0, 15], de façon à visualiser les résultats de la question 3. Quelles valeurs extrêmes de l'ordonnée y peut-on choisir pour la fenêtre de la calculatrice?

Exercice 2

Partie A

La fonction g est définie sur $[0; +\infty)$ par

 $g(x) = 1 - e^{-x}.$

On admet que la fonction g est dérivable sur [0; $+\infty$ [.

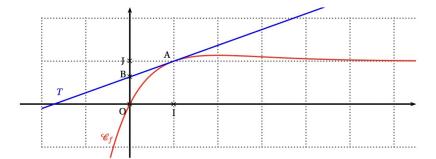
2. Etudier les variations de la fonction g sur $[0; +\infty]$ et dresser son tableau de variations.

Partie B

Dans cette partie, k désigne un réel strictement positif. On considère la fonction f définie sur \mathbb{R} par

 $f(x) = (x-1)e^{-kx} + 1.$

On admet que la fonction f est dérivable sur \mathbb{R} et on note f' sa fonction dérivée. Dans le plan muni d'un repère orthonormé (O; I, J), on note \mathscr{C}_f la courbe représentative de la fonction f. Cette courbe est représentée ci-dessous pour une certaine valeur de k. La tangente T à la courbe \mathscr{C}_f au point A d'abscisse 1 coupe l'axe des ordonnées en un point noté B.



1. a. Démontrer que pour tout réel x,

$f'(x) = e^{-kx}(-kx+k+1).$

b. Démontrer que l'ordonnée du point B est égale à g(k) où g est la fonction définie dans la partie A.

2. En utilisant la partie A, démontrer que le point B appartient au segment [OJ].

Commun à tous les candidats				
On considère la fonction f définie sur $\mathbb R$ par				
$f(x) = x \mathrm{e}^{-x^2 + 1}.$				
On note ($\mathscr C$) la courbe représentative de f dans un repère orth	honor	$me(0; \overline{1})$	\vec{z}, \vec{J}).	
1. a. //////////////////////////////////				
b. ////////////////////////////////////				
2. Pour tout réel x, on considère les points M et N de la courbe (\mathscr{C})) d'abs	scisses resp	ctives x	$c ext{ et } -x.$
a. Montrer que le point O est le milieu du segment [MN].				
b. Que peut-on en déduire pour la courbe (<i>C</i>)?				
3. Étudier les variations de la fonction f sur l'intervalle [0; $+\infty$ [.				

Exercice nº 22 (enseignement obligatoire)

Partie A

On considère la fonction numérique f de la variable réelle x définie sur l'intervalle [0; + ∞ [par :

 $f(x) = \sqrt{x} \mathrm{e}^{1-x}.$

On note \mathscr{C} la courbe representative de f dans le plan rapporté un repère orthonormal $\left(O, \vec{i}, \vec{j}\right)$.

- **2.** Démontrer que f est dérivable sur]0 ; $+\infty$ [puis calculer f'(x).
- 3. Déduire des questions précédentes le tableau de variation de f.
- 4. Construire la courbe ${\mathscr C}$ (unité graphique : 2 cm). On admettra que ${\mathscr C}$ est tangente en O à l'axe des ordonnées.

2003

18