DS Seconde II Sujet 1

Jeudi 9 novembre

Exercice 1

1. Traduire chaque inégalité par un intervalle :

a)
$$x > 5$$

b)
$$2 \le x \le 10$$

é. Dans chaque cas, déterminer l'union puis l'intersection des deux intervalles suivants en utilisant les symboles appropriés (Le tracé des droites est conseillé)

a)
$$K = [-2; 4]$$
 et $L = [3; 5]$

et
$$L = [3;5]$$

b) a)
$$K =]-\infty;-1]$$
 et $L = [-3;5]$

et
$$L = \begin{bmatrix} -3;5 \end{bmatrix}$$

Exercice 2

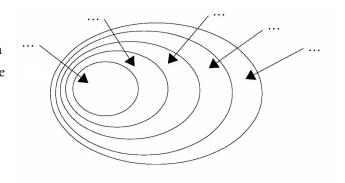
Compléter le tableau suivant :

Inégalité en valeur absolue	« Encadrement »	Intervalle	Représentation
	$-5 \le x \le 2$		
		x ∈ [-8;6]	
x-6 <3			
$ x=1 \ge 3$			

Exercice 3

1) Après avoir simplifié au maximum les nombres suivants, donner le plus petit ensemble de nombre $A = \frac{15}{25} - \frac{2}{15}$ $B = -\frac{21}{3\sqrt{49}}$ $C = \frac{\sqrt{56}}{2\sqrt{40}}$

auquel il appartient :


$$A = \frac{15}{25} - \frac{2}{15}$$

$$B = -\frac{21}{3\sqrt{49}}$$

$$C = \frac{\sqrt{56}}{2\sqrt{40}}$$

- 2) a) Donner un nombre rationnel non décimal
 - b) Donner un nombre réel non rationnel
 - c) Donner un entier non naturel
- 3) a) Compléter le schéma ci-contre en indiquant à l'origine de chaque flèche, le nom de l'ensemble de nombre associé (\mathbb{N} , \mathbb{R} , \mathbb{Q} , \mathbb{Z} , \mathbb{ID})
- b) Placer dans le schéma ci-contre les nombres suivants:

$$\frac{1}{3}$$
; $\frac{1}{5}$; $-\frac{32}{4}$; $\sqrt{9}$; $\sqrt{5}$; 10^3

Racines carrées Répondre sur le sujet

Ecrire sous la forme $a\sqrt{b}$ avec a et b entiers, b étant le plus petit possible

$$A = \sqrt{75}$$

$$B=\sqrt{108}$$

$$C = 3\sqrt{3} - 5\sqrt{3}$$

$$D = \sqrt{27} + 2\sqrt{12}$$

$$E = \sqrt{3} \times \sqrt{6}$$

$$F = \sqrt{5} \times 2\sqrt{15}$$

Nom: prénom:

Racines carrées Répondre sur le sujet

Ecrire sous la forme $a\sqrt{b}$ avec a et b entiers, b étant le plus petit possible

$$A = \sqrt{48}$$

$$B = \sqrt{108}$$

$$C = 2\sqrt{3} - 6\sqrt{3}$$

$$D = \sqrt{27} + 2\sqrt{12}$$

$$E = \sqrt{2} \times \sqrt{4}$$

$$F = \sqrt{6} \times 2\sqrt{8}$$

DS Seconde II Sujet 2

Exercice 1

1. Traduire chaque inégalité par un intervalle :

a)
$$x > 2$$

b)
$$-2 \le x \le 8$$

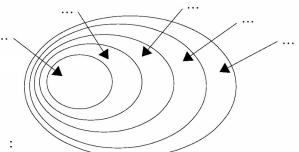
2. Dans chaque cas, déterminer l'union puis l'intersection des deux intervalles suivants en utilisant les symboles appropriés (Le tracé des droites est conseillé)

a)
$$K = [-3; 4]$$
 et $L = [1; 5]$

et
$$L = [1;5]$$

b) a)
$$K =]-\infty;-2]$$
 et $L = [-3;4]$

t
$$L = [-3;4]$$


Exercice 2

Compléter le tableau suivant :

Inégalité en valeur absolue	« Encadrement »	Intervalle	Représentation
	$-1 \le x \le 4$		
		$x \in [-6;8]$	
x-4 <3			
$ x+2 \ge 3$			

Exercice 3

- 1) Après avoir simplifié au maximum les nombres suivants, donner le plus petit ensemble de nombre $A = \frac{15}{25} - \frac{2}{15} \qquad B = -\frac{21}{3\sqrt{49}} \qquad C = \frac{\sqrt{56}}{2\sqrt{40}}$ auquel il appartient:
- 2) a) Donner un nombre rationnel non décimal
 - b) Donner un nombre réel non rationnel
 - c) Donner un entier non naturel
- 3) a) Compléter le schéma ci-contre en indiquant à l'origine de chaque flèche, le nom de l'ensemble de nombre associé (\mathbb{N} , \mathbb{R} , \mathbb{Q} , \mathbb{Z} , \mathbb{ID})

b) Placer dans le schéma ci-contre les nombres suivants :

$$\frac{3}{4}$$
 ; $\frac{1}{7}$; $-\frac{36}{9}$; $\sqrt{25}$; $\sqrt{7}$; 10^8