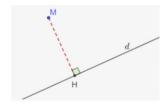

Chapitre 2 repérage en géométrie

I- Projection orthogonal

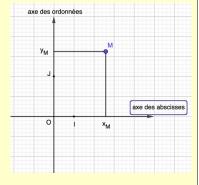
Propriété


L'ensemble des points situés à une distance fixée x d'une droite d est composée de deux droites Δ_1 et Δ_2 parallèles et situées de part et d'autre de d

Définition

On appelle **projeté orthogonal** d'un point M sur une droite d le point d'intersection H de la perpendiculaire à d passant par M.

Définition On appelle distance d'un point M à une droite d la longueur MH où H est le projeté orthogonal de M sur la droite d . C'est la plus courte distance entre M et la droite d.


II- Repérage

Définition

Un repère (O ; I , J) du plan est formé d'une **origine** O , d'un **axe des abscisses** (la droite (OI)) et d'un **axe des ordonnées** (la droite (OJ))

Tout point M est alors repéré par un unique couple $(x_M ; y_M)$ de réels appelé coordonnées de M .

Le nombre x_M est l'abscisse de M et y_M est son ordonnée.

Dans le repère (O ; I , J) ci-contre, lire les coordonnées des points A , B , C , D , E , F , G :

- A (;)
- E (;)
- B (;)
- F(;)
- C(;)
- G(;)
- D(;)

Remarque

- Si le triangle OIJ est rectangle en O le repère est dit orthogonal
- Si le triangle OIJ est rectangle isocèle en O le repère est dit orthonormal ou orthonormé

III- Milieu d'un segment

Propriété: Soient (xA; yA) et (xB; yB) les coordonnées respectives de deux points A et B

Le milieu K du segment [AB] a pour coordonnées : $K\left(\frac{x_A + x_B}{2}; \frac{y_A + y_B}{2}\right)$

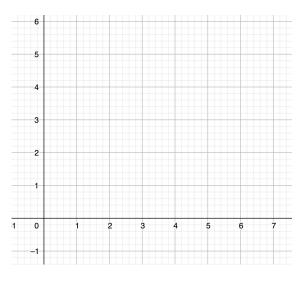
Exemple : Soient A(2;-1) et K(4;2). Le point B (x ; y) est tel que K est le milieu de [AB]. Pour trouver les coordonnées de B, on peut appliquer la formule :

$$\begin{cases} x_{K} = \frac{x_{A} + x_{B}}{2} \\ y_{K} = \frac{y_{A} + y_{B}}{2} \end{cases} \Leftrightarrow \begin{cases} 4 = \frac{2 + x}{2} \\ 2 = \frac{-1 + y}{2} \end{cases} \Leftrightarrow \begin{cases} 8 = 2 + x \\ 4 = -1 + y \end{cases} \Leftrightarrow \begin{cases} x = 6 \\ y = 5 \end{cases} \text{ d'où B (6; 5)}$$

On peut alors réaliser ci-dessous une figure pour vérifier le résultat.

IV- Distance entre deux points

<u>Propriété</u>: Soient (x_A ; y_A) et (x_B ; y_B) les coordonnées respectives de deux points A et B dans un repère


orthonormal (O; I, J).

La distance AB du point A au point B est donnée par : $AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$

Exemple: Soient A(2;-1), K(4;2) et B(6;5).

D'après l'exemple précédent, on sait que K est le milieu de [AB] donc KA = KB.

Vérifier-le en appliquant la formule

