Khôlle 4	Nom	Mercredi	8 octobre	N	Note:	/ 20
Avis ·						

Cours

 \bullet Proposition + Démo

Soit $f: E \to F$ et $g: F \to G$ deux applications. Si f et g sont bijectives alors $g \circ f$ est bijective et sa bijection réciproque est $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$

Exercices

- **Ex1** Soit R la relation définie dans \mathbb{R} par : \forall (x,y) \in \mathbb{R}^2 , x R y \Leftrightarrow $x e^y = y e^x$ Montrer que R est une relation d'équivalence sur \mathbb{R} .
- Ex2 Soit E un ensemble. Soit $f: E \to E$ telle que $f \circ f \circ f = f$. Montrer que f est injective si et seulement si f est surjective

Ex3 Soit
$$f(x) = \frac{1}{x^2 - 7x + 10}$$

- a) Montrer que $f(x) = \frac{1}{3} \left(-\frac{1}{x-2} + \frac{1}{x-5} \right)$
- b) En déduire une primitive de f sur [6;7]

Khôlle 4	Nom	Mercredi 8 octobre	Note: / 20
Avis:			

Cours

- 1. Soit R une relation binaire sur un ensemble E. Compléter:
 - R est réflexive si
 - R est antisymétrique si
- 2. Démontrer que la composée de deux applications injectives est injective

Exercices

Ex1 Soit $f : \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \frac{2x}{1+x^2}$

- 1) f est-elle injective ? Surjective ? (on pourra dresser le tableau de variations de f)
- 2) Donner l'image de IR par f
- 3) Montrer que la restriction $g:[-1;1] \rightarrow [-1;1]$ définie par g(x) = f(x) est une bijection
- Ex2 On définit une relation binaire R sur \mathbb{R}^{+*} par: $x R y \Leftrightarrow \exists n \in \mathbb{N}$, $y = x^n$ Montrer que R est une relation d'ordre . Cet ordre est-il total ?

Ex3 Soit
$$f(x) = \frac{1}{x^2 - 7x + 10}$$

- a) Montrer que $f(x) = \frac{1}{3} \left(-\frac{1}{x-2} + \frac{1}{x-5} \right)$
- b) En déduire une primitive de f sur [6;7]

Khôlle 4	Nom	Mercredi 8 octobre	Note: / 20
Avis			

Cours

- 1. Soit R une relation binaire sur un ensemble E. Compléter :
 - R est symétrique si
 - R est transitive si
- 2. Démontrer que la composée de deux fonctions surjectives est surjectives

Exercices

Ex1 On considère quatre ensembles A, B, C, D et des applications

$$f : A \rightarrow B$$
, $g : B \rightarrow C$, $h : C \rightarrow D$

- a) Montrer que :
 - $g \circ f$ injective \Rightarrow f injective
 - $g \circ f$ surjective \Rightarrow g surjective
- b) Montrer que : $g \circ f$ et $h \circ g$ sont bijectives \Leftrightarrow f, g, h sont bijectives

Ex2 Soit $E = \mathbb{R}^2$ et on définit une relation R par :

$$(x,y) R (x',y') \Leftrightarrow x^2 + y^2 = x'^2 + y'^2$$

- 1. Montrer que R est une relation d'équivalence.
- 2. Décrire les classes d'équivalence

Ex3 Soit $f(x) = \frac{1}{x^2 - 7x + 10}$

- a) Montrer que $f(x) = \frac{1}{3} \left(-\frac{1}{x-2} + \frac{1}{x-5} \right)$
- b) En déduire une primitive de f sur [6;7]