Sujet 1: Khôlle 3

Ex1 On rappelle que $\sqrt{2}$ est un irrationnel.

1) Démontrer, par l'absurde, que si a et b sont deux entiers relatifs tels que a+ $b\sqrt{2} = 0$ alors a = 0 et b = 0

Raisonnons par l'absurde. Supposons que $a+b\sqrt{2}=0$ sans que a=0 et b=0 car si b = 0 alors on devrait aussi avoir a = 0 ce qui est contraire à l'hypothése (a;b) \neq

- (0;0) mais alors on aurait $\sqrt{2} = \frac{a}{b} \in \mathbb{Q}$ ce qui est faux et on a a = 0 et b = 0
 - 2) En déduire que si m , n , p , q sont des entiers relatifs alors : $m+n\sqrt{2}=p+q\sqrt{2} \Leftrightarrow m=n \text{ et } p=q$

Facile m+ $n\sqrt{2}$ =p+ $q\sqrt{2}$ donc (m-p)+ $(n-q)\sqrt{2}$ =0 et d'après la question précédente m-p=0 et n-q=0 d'où la réponse

Ex2 Déterminer toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ telle que $: \forall \ x \in \mathbb{R}$,

$$f(x) + xf(1-x) = 1 + x$$
 (1)

aide : on pourra penser à poser y = 1 - x

Soif f une fonction solution s'il en existe

En posant y = 1 - x il vient f(1-y)+(1-y)f(y)=2-y pour tout y

Ainsi
$$yf(1-y)+(y-y^2)f(y)=2y-y^2$$
 (2) or d'après la relation (1) on a $f(y)+yf(1-y)=1+y$ d'où $yf(1-y)=1+y-f(y)$

En remplaçant dans (2) il vient $1+y-f(y)+(y-y^2)f(y)=2$ $y-y^2$ ce qui donne $(y-y^2-1)f(y)=y-y^2-1$ d'où f(y)=1 et donc f est la fonction constante égale à 1

Réciproquement, cette fonction convient donc c'est la seule solution du problème

Ex3 On considère la suite (u_n) définie par $u_0 = u_1 = 1$ et pour tout entier naturel n non nul, $u_{n+1} = u_n + \frac{2}{n+1} u_{n-1}$ Démontrer que pour tout $n \neq 0$, $1 \leq u_n \leq n^2$

Sujet 2: Khôlle 3

Ex1 On considère la suite (u_n) définie pour tout entier naturel n par :

$$u_0 = 1$$
 et pour tout n, $u_{n+1} = \frac{2}{n+1} \sum_{k=0}^{n} u_k u_{n-k}$

Démontrer que pour tout entier naturel n, $u_n = 2^n$

initialisation : $2^0 = 1 = u_0$

Effectuons une récurrence forte :

supposons que pour tout $k \le n$, $u_k = 2^k$ et DQ $u_{n+1} = 2^{n+1}$

$$u_{n+1} = \frac{2}{n+1} \sum_{k=0}^{n} u_k u_{n-k} = \frac{2}{n+1} \sum_{k=0}^{n} 2^k 2^{n-k} = \frac{2}{n+1} \sum_{k=0}^{n} 2^k$$
$$= \frac{2}{n+1} \times (n+1) \times 2^n = 2^{n\ell+1} \text{ CQFD}$$

<u>Exo 2</u>

On a les égalités

 $A \cup B = A \cap C, \qquad B \cup C = B \cap A, \qquad C \cup A = C \cap B.$

Utilisons la première

 $A\subset A\cup B \text{ donc } A\subset A\cap C. \text{ Ainsi } A\subset C \text{ et (puisque } A\cap C\subset A\text{)} \ A\cup B\subset A. \text{ Or } A\cup B\subset A \text{ implique } B\subset A.$ Donc de la première égalité on obtient

 $B \subset A$ et $A \subset C$.

Avec la deuxième égalité $B \cup C = B \cap A$ on procède de la même façon

• $B \subset B \cup C = B \cap A$ donc $B \subset A$ (déjà obtenu) et $B \subset C$ n'est pas direct ; mais $B \cap A \subset B$ donne $B \cup C \subset B$ donc $C \subset B$.

Ainsi de la deuxième on obtient

 $C \subset B$.

On a donc les inclusions

 $C \subset B \subset A \subset C$

D'où A=B=C.

2) Donner un exemple d'une application $f: E \to F$ et de deux parties A et B de E telles que $f(A \cap B) \neq f(A) \cap f(B)$

Prenons un exemple simple :

 $E=\{1,2\}$, $F=\{a\}$ et $f: E \to F$ définie par $f(1)=a, \ f(2)=a$ (application constante). Posons $A=\{1\}$ et $B=\{2\}$.

- $A \cap B = \emptyset$ donc $f(A \cap B) = f(\emptyset) = \emptyset$.
- $f(A) = \{a\}$ et $f(B) = \{a\}$, donc $f(A) \cap f(B) = \{a\}$.

Ainsi $f(A \cap B) = \emptyset \neq \{a\} = f(A) \cap f(B)$

Ex3 Déterminer toutes les fonctions $f : \mathbb{R} \to \mathbb{R}$ telle que $: \forall x \in \mathbb{R}$,

$$f(x) + xf(1-x) = 1 + x$$
 (1)

aide : on pourra penser à poser y = 1 - x

Soif f une fonction solution s'il en existe

En posant y = 1 - x il vient f(1-y)+(1-y)f(y)=2-y pour tout y

Ainsi $yf(1-y)+(y-y^2)f(y)=2y-y^2$ (2) or d'après la relation (1) on a

$$f(y)+yf(1-y)=1+y$$
 d'où $yf(1-y)=1+y-f(y)$

En remplaçant dans (2) il vient $1+y-f(y)+(y-y^2)f(y)=2$ $y-y^2$ ce qui donne $(y-y^2-1)f(y)=y-y^2-1$ d'où f(y)=1 et donc f est la

fonction constante égale à 1

Réciproquement, cette fonction convient donc c'est la seule solution du problème

Sujet 3 Khôlle 3

Exercices

Ex1 Trop facile

- 1) Soit f la fonction définie sur \mathbb{R} par $f(x)=x^2$ et soit A=[-1;4]. Déterminer :a) L'image directe de A=[-1;4]
 - b) L'image réciproque de A
- 2) On considère la fonction définie sur \mathbb{R} par $f(x) = \sin x$.
 - a) Quelle est l'image directe par f de $\mathbb R\,$? de $\left[\,0\,;2\,\pi\,\right]\,$? de $\left[\,0\,;\frac{\pi}{2}\,\right]\,$?
 - b) Quelle est l'image réciproque par f de [0;1] ? de [3;4] ? de [1;2] ?

 \mathbb{R} Déterminer toutes les fonctions $f : \mathbb{R} \to \mathbb{R}$ telle que

$$\forall x \in \mathbb{R}, \quad f(x-f(y))=2-x-y$$

aide : on pourra penser à poser y = x + f(0)

Cherchons toutes les fonctions $f\colon \mathbb{R} \to \mathbb{R}$ satisfaisant

$$\forall x, y \in \mathbb{R}, \qquad f(x - f(y)) = 2 - x - y. \quad (P(x,y))$$

1. Posons x=f(y) dans (P). On obtient, pour tout y,

$$f(0) = 2 - f(y) - y.$$

D'où

$$f(y) + y = 2 - f(0)$$
 pour tout y.

Donc il existe une constante c telle que f(y) = c - y pour tout y, avec c = 2 - f(0).

2. Appliquons cette forme à y=0. On a f(0)=c-0=c. Donc

$$c=2-f(0)=2-c \quad \Rightarrow \quad 2c=2 \quad \Rightarrow \quad c=1.$$

 ${\rm Ainsi}\ f(y)=1-y\ {\rm pour\ tout}\ y.$

3. Vérification : pour f(x) = 1 - x,

$$f(x-f(y)\,)=1-(x-(1-y)\,)=1-(x-1+y)=2-x-y,$$

donc la fonction vérifie bien l'équation.

Conclusion: il n'y a qu'une seule solution,

$$f(x) = 1 - x$$
 pour tout $x \in \mathbb{R}$.

Ex3 Soit (u_n) la suite pour tout entier naturel n non nul par $u_1 = 3$ et pour tout $n \ge 1$, $u_{n+1} = \frac{2}{n} \sum_{k=1}^{n} u_k$. Démontrer que pour tout n différent de 0 on a $u_n = 3n$

Une récurrence forte est à faire on suppose donc que pour out $k \le n$, on a $u_k = 3k$ d'où

$$u_{n+1} = \frac{2}{n} \sum_{k=1}^{n} u_k = \frac{2}{n} \sum_{k=1}^{n} 3k = \frac{2}{n} \times \left(\frac{3 \times n(n+1)}{2}\right) = 3(n+1) \text{ CQFD}$$