SUJET 1

Cours

On donne $S_n = \sum_{k=0}^n k^2$. Donner l'expression de S_n en fonction de n puis démontrer ce résultat

Exercices

Ex1 Calculer
$$S = \sum_{k=1}^{n} (7^{k} + 4k - n + 2)$$

Ex2 Calculer
$$\prod_{k=1}^{n+1} \frac{2k+1}{2k-1}$$

Ex3 Soit $n \in \mathbb{N}^*$. On pose pour tout $p \in \mathbb{N}^*$, $S_p = \sum_{k=1}^n k^p$

- a) Exprimer la somme A= $\sum_{k=1}^{n} (k+1)^4$ en fonction de S_1 , S_2 , S_3 et S_4
- b) A l'aide d'un changement d'indice, exprimer A en fonction de S₄ et de n uniquement
- c) En déduire le calcul de la somme S₃
- Ex4 Calculer, pour tout $n \in \mathbb{N}^*$, la somme double $S_n = \sum_{1 \le i \le j \le n} \frac{i}{j}$

SUJET 2

Cours

On donne $S_n = \sum_{k=0}^{n} k^3$. Donner l'expression de S_n en fonction de n puis démontrer ce résultat

Exercices

Ex1 Calculer
$$S_n = \sum_{i=n}^{2n} (i+1+n)$$

Ex2 Simplifier
$$S = \sum_{k=1}^{2n} (-1)^k k$$
 et $P = \prod_{k=1}^{n} e^k$

Ex3 On cherche à calculer $S_n(x) = \sum_{k=1}^n kx^k$

- a) Soit $f_n(x) = \sum_{k=1}^n x^k$. Donner l'expression de $f_n(x)$ puis de $f_n'(x)$
- b) Calculer $x \times f'_n(x)$ et en déduire l'expression de $S_n(x)$ en fonction de x
- c) En déduire la valeur de $\sum_{k=1}^{n} k 2^{k}$

Ex4 Calculer
$$S = \sum_{k=1}^{100} |50 - k|$$

SUJET 3

Cours Démontrer l'égalité du triangle de Pascal

Exercice

Ex1 Calculer
$$S = \sum_{k=1}^{100} |50 - k|$$

Ex2 Calculer, pour tout entier n, la somme $S_n = \sum_{k=0}^{n} {n \choose k} 2^k$ (on pourra penser au binome de newton)

Ex3 a) Montrer que
$$\prod_{k=1}^{n} (n+k) = \frac{1}{4n+2} \prod_{p=1}^{n+1} (n+1+p)$$

b) pour tout $n \in \mathbb{N}^*$, montrer alors, par récurrence, que

$$\prod_{k=1}^{n} 4k - 2 = \prod_{k=1}^{n} (n+k)$$

Ex4 a) Soit a et b deux réels. On définit

$$min(a,b) = \begin{cases} b & si \ a \ge b \\ a & si \ b \ge a \end{cases}$$
 et $max(a,b) = \begin{cases} b & si \ a \le b \\ a & si \ b \le a \end{cases}$

Calculer, pour tout $n \in \mathbb{N}^*$, la somme $\sum_{1 \le i,j \le n} \min(i,j)$

b) Vérifier la formule pour n = 2