Le Jeudi 16 novembre 2023, durée 2 heures

Sujet 2

Toute trace de recherche sera valorisée donc ne pas hésiter à proposer une réponse ou un début de réponse

Exercice 1 Les questions de cet exercice sont indépendantes

5,5 points

Aucune valeur approchée ne sera acceptée et les réponses seront justifiées

- 1) Soit R(x) = $2x^2 30x + 28$
 - a) Calculer les racines de R
 - b) Déterminer la forme canonique de R
 - c) Dresser le tableau de signe de R(x)
- 2) Henri a commencé l'écriture d'une fonction en langage python afin d'obtenir les variations d'une fonction polynôme du second degré définie par $f(x) = ax^2 + bx + c$ avec $a \ne 0$. Il a écrit :

- a) Par quoi faut-il remplacer (1), (2), (3) et (4) afin de répondre au problème d'Henri?
- b) Qu'obtient-on en affichage si on entre dans la console variation(2,3,4)
- 3) Soit m un réel.

On cherche à déterminer les réels m pour lesquels l'équation (E_m) : $(m-3)x^2+(m+2)x+m+5=0$ soit une équation du second degré qui admette exactement une solution

- a) Calculer, en fonction de m, le discriminant de cette équation .
- b) En déduire les valeurs de m qui répondent à la question
- c) Déterminer, pour les valeurs de m trouvée précédemment, cette solution unique

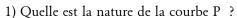
Exercice 2 5,5 points

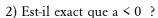
A) Question de cours:

Soit f un polynôme du second degré $f(x) = ax^2 + bx + c$.

On sait que f admet deux racines distinctes x_1 et x_2 . Recopier et compléter : $\begin{cases} x_1 + x_2 = \dots \\ x_1 \times x_2 = \dots \end{cases}$

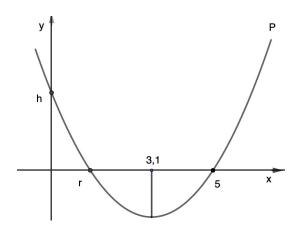
Cette courbe représente la fonction f définie pour tout réel x par $f(x) = ax^2 + bx + c$ (où a, b et c sont des réels avec $a \ne 0$)





5) En déduire que
$$r = 1,2$$
.

6) On pose
$$\Delta = b^2 - 4ac$$
. Est-il exact que $\Delta \le 0$?



Exercice 3 Les questions de cet exercice sont indépendantes

1) Parmi les nombres ci-dessous, un seul n'admet pas le même point image sur le cercle trigonométrique . Lequel et pourquoi ?

$$\frac{14\,\pi}{3}$$
 ; $\frac{62\,\pi}{3}$; $-\frac{16\,\pi}{3}$; $-\frac{41\,\pi}{3}$

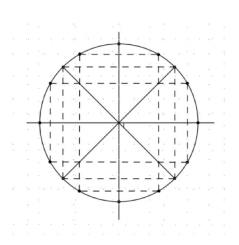
2) Sur le cercle trigonométrique ci-joint, placer soigneusement les points suivants :

$$A\left(-\frac{13\,\pi}{2}\right)$$
 $B\left(-\frac{5\,\pi}{6}\right)$ $C\left(\frac{29\,\pi}{6}\right)$

$$D(317 \pi) E(-\frac{4 \pi}{3}) F(-\frac{21 \pi}{4})$$

3) Compléter sur le sujet :

$$\sin\left(-\frac{4\pi}{3}\right) = \dots \qquad \cos\left(\frac{29\pi}{6}\right) = \dots$$



6 points

4) Soit x_1 , x_2 , x_3 trois mesures principales telles que:

$$\begin{vmatrix} \sin x_1 = \frac{\sqrt{3}}{2} \\ \cos x_1 = -\frac{1}{2} \end{vmatrix} = \begin{vmatrix} \cos x_2 = \frac{\sqrt{2}}{2} \\ \sin x_2 = -\frac{\sqrt{2}}{2} \end{vmatrix}$$

$$\begin{vmatrix} \sin x_3 = 0 \\ \cos x_3 < 0 \end{vmatrix}$$
Donner les valeurs de x_1 , x_2 et x_3 .

6) Démontrer que, pour tout réel x, $(\cos x + \sin x)^2 + (\cos x - \sin x)^2 = 2$

7) Soit
$$x \in \left[-\pi; -\frac{\pi}{2}\right]$$
. Déterminer $\cos x$ sachant que $\sin x = \frac{1}{5}$

Exercice 4 3 points

On considère la fonction polynôme f définie sur \mathbb{R} par $f(x) = 4x^3 + 4x^2 - 9x + 1$. On appelle P sa courbe représentative

1) Etude des racines de f(x)

- a) Déterminer les réels a , b et c tels que $f(x) = (x-1)(ax^2+bx+c)$
- b) Dans cette question, on prendra a=4 , b=8 , c=-1 Déterminer les solutions de l'équation $f(\mathbf{x})=0$

2) Etude d'une autre fonction

On considère la fonction g dont une représentation graphique est la parabole P' de sommet $S\left(\frac{3}{4}; -\frac{1}{8}\right)$ passant par A(0;1).

- a) Déterminer l'expression de g(x) en fonction de x
- b) Pour la suite on prendra $g(x) = 2x^2 3x + 1$ Déterminer, par le calcul, les coordonnées des points d'intersection de P' avec l'axe des abscisses

La question suivante est une question facultative, elle ne rentrera dans le barème qu'en bonus

3) Intersection des deux courbes

- a) Ecrire comme produit des trois facteurs du premier degré $A = 4x^3 + 2x^2 6x$
- b) Résoudre alors l'inéquation $A \ge 0$
- c) En déduire la position relative des paraboles P et P'