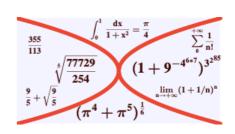
DM 5 Première B



Exercice 1:

Soit la suite (u_n) définie sur \mathbb{N} par $u_0=2$ et pour tout entier naturel n par $u_{n+1}=-\frac{1}{2}u_n^2+3u_n-\frac{3}{2}u_n^2$

1) Calculer u_1 et u_2 . On donnera les valeurs exactes en détaillant les calculs

$$u_1 = -\frac{1}{2}u_0^2 + 3u_0 - \frac{3}{2} = -\frac{1}{2} \times 4 + 6 - \frac{3}{2} = 4 - \frac{3}{2} = \frac{5}{2}$$

$$u_2 = -\frac{1}{2}u_1^2 + 3u_1 - \frac{3}{2} = -\frac{1}{2} \times \frac{25}{4} + 3 \times \frac{5}{2} - \frac{3}{2} = \frac{-25}{8} + \frac{15}{2} - \frac{3}{2} = \frac{23}{8}$$

2) Donner une valeur approchée à 10^{-5} près de u_3 et u_4

$$u_3 \approx 2,99219$$
 et $u_4 \approx 2,99997$

3) Conjecturer le sens de variation de la suite (u_n) ainsi que sa limite éventuelle.

Il semble que la suite soit croissante et converge vers 3

- 4) Soit (v_n) la suite définie par $v_n = u_n 3$
 - a) Démontrer que pour tout n, $v_{n+1} = -\frac{1}{2}v_n^2$

$$v_{n+1} = u_{n+1} - 3 = -\frac{1}{2}u_n^2 + 3u_n - \frac{3}{2} - 3 = -\frac{1}{2}(u_n^2 - 6u_n + 9) = -\frac{1}{2}(u_n - 3)^2 = -\frac{1}{2}v_n^2$$

b) Démontrer que $v_{n+1} - v_n = -v_n \left(\frac{1}{2}v_n + 1\right)$

$$v_{n+1} - v_n = -\frac{1}{2}v_n^2 - v_n = -v_n(\frac{1}{2}v_n + 1)$$

c) On admet que pour tout entier naturel n, $-1 \le v_n \le 0$.

En déduire le sens de variation de la suite (v_n)

comme v_n est négatif (car on admet que $v_n \le 0$) on a donc $-v_n$ qui est positif donc le signe

de
$$v_{n+1}-v_n$$
 est celui de $\frac{1}{2}v_n+1$. Or $-1 \le v_n \le 0$
$$-\frac{1}{2} \le \frac{1}{2}v_n \le 0$$

$$\frac{1}{2} \le \frac{1}{2}v_n+1 \le 1$$

D'où $\frac{1}{2}v_n+1$ est positif, on en déduit que $v_{n+1}-v_n \ge 0$

$$v_{n+1} \ge v_n$$

 (v_n) est donc croissante

5) Quelle conjecture émise à la question 3) ce résultat sur le sens de variation de la suite (v_n) permet-il de justifier ?

On sait que $u_n = v_n + 3$ d'où $u_{n+1} - u_n = v_{n+1} - v_n$, ainsi comme $v_{n+1} - v_n$ est positif, $u_{n+1} - u_n$ aussi et on a donc (u_n) suite croissante (deuxième conjecture)

Exercice 2:

On considère la suite (u_n) définie par $u_1 = \frac{1}{3}$ et pour tout entier naturel $n \ge 1$, $u_{n+1} = \frac{n+1}{3n} u_n$

1) Calculer u_2 , u_3 , u_4 . On donnera les valeurs exactes en détaillant les calculs

$$u_2 = \frac{1+1}{3 \times 1} u_1 = \frac{2}{3} \times \frac{1}{3} = \frac{2}{9}$$
 $u_3 = \frac{3}{6} u_2 = \frac{3}{6} \times \frac{2}{9} = \frac{1}{9}$

$$u_3 = \frac{3}{6} u_2 = \frac{3}{6} \times \frac{2}{9} = \frac{1}{9}$$

2) Proposer un algorithme en langage python afin de calculer le terme de rang n de cette suite.

Voir cours

- 3) On pose $v_n = \frac{u_n}{n}$ pour $n \ge 1$.
 - a) Démontrer que $v_{n+1} = \frac{v_n}{3}$.

$$v_{n+1} = \frac{u_{n+1}}{n+1} = \frac{n+1}{3n} \times u_n \times \frac{1}{n+1} = \frac{u_n}{3n} = \frac{1}{3}v_n$$

b) En calculant les premiers termes de la suite (v_n) , conjecturer la forme explicite de cette suite.

$$v_1 = \frac{u_1}{1} = \frac{1}{3}$$
 $v_2 = \frac{1}{9}$ $v_3 = \frac{1}{27}$ Il semble que $v_n = \left(\frac{1}{3}\right)^n$

4) Montrer que $u_n = n \left(\frac{1}{3}\right)^n$ pour tout $n \ge 1$

En admettant que $v_n = \left(\frac{1}{3}\right)^n$, on a $u_n = n \times v_n = n \times \left(\frac{1}{3}\right)^n$

5) Etudier alors le sens de variation de la suite (u_n)

$$u_{n+1} - u_n = (n+1) \times \left(\frac{1}{3}\right)^{n+1} - n \times \left(\frac{1}{3}\right)^n = \left(\frac{1}{3}\right)^n \left((n+1) \times \left(\frac{1}{3}\right) - n\right) = \left(\frac{1}{3}\right)^n \times \left(-\frac{2}{3}n + \frac{1}{3}\right) = \left(\frac{1}{3}\right)^n \left(\frac{-2n+1}{3}\right) = \left(\frac{2n+1}{3}\right)^n \left(\frac{-2n+1}{3}\right) = \left(\frac{2n+1}{3}\right)^n \left(\frac{2n+1}{3}\right) = \left(\frac{2n+1}{3}\right)^n \left(\frac{2n+1}{3}\right) = \left(\frac{2n+1}{3}\right)^n \left(\frac{2n+1}{3}\right)^n \left(\frac{2n+1}{3}\right) = \left(\frac{2n+1}{3}\right)^n \left(\frac{2n+1}{3}\right)$$

Le signe de $u_{n+1}-u_n$ est donc celui de -2n+1 car le reste est positif d'où

$$-2n+1>0$$

$$-2n>-1$$

$$n<\frac{1}{2}$$

Ainsi, pour $n \ge 1$, -2n+1 est négatif ce qui donne $u_{n+1}-u_n < 0$

$$u_{n+1} < u_n$$

La suite (u_n) est donc décroissante