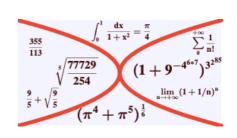
DM 5 Première B



Exercice 1:

Soit la suite (u_n) définie sur \mathbb{N} par $u_0=2$ et pour tout entier naturel n par $u_{n+1}=-\frac{1}{2}u_n^2+3u_n-\frac{3}{2}u_n^2$

- 1) Calculer u_1 et u_2 . On donnera les valeurs exactes en détaillant les calculs
- 2) Donner une valeur approchée à 10^{-5} près de u_3 et u_4
- 3) Conjecturer le sens de variation de la suite (u_n) ainsi que sa limite éventuelle.
- 4) Soit (v_n) la suite définie par $v_n = u_n 3$
 - a) Démontrer que pour tout n, $v_{n+1} = -\frac{1}{2} v_n^2$
 - b) Démontrer que $v_{n+1}-v_n=-v_n\left(\frac{1}{2}v_n+1\right)$
 - c) On admet que pour tout entier naturel n, $-1 \le v_n \le 0$. En déduire le sens de variation de la suite (v_n)
- 5) Quelle conjecture émise à la question 3) ce résultat sur le sens de variation de la suite (v_n) permet-il de justifier ?

Exercice 2:

On considère la suite (u_n) définie par $u_1 = \frac{1}{3}$ et pour tout entier naturel $n \ge 1$, $u_{n+1} = \frac{n+1}{3n} u_n$

- 1) Calculer u_2 , u_3 , u_4 . On donnera les valeurs exactes en détaillant les calculs
- 2) Proposer un algorithme en langage python afin de calculer le terme de rang n de la suite.
- 3) On pose $v_n = \frac{u_n}{n}$ pour $n \ge 1$.
 - a) Démontrer que $v_{n+1} = \frac{v_n}{3}$.
 - b) En calculant les premiers termes de la suite (v_n) , conjecturer la forme explicite de cette suite.
- 4) Montrer que $u_n = n \left(\frac{1}{3}\right)^n$ pour tout $n \ge 1$
- 4) Etudier alors le sens de variation de la suite (u_n)