Chapitre 6: Suites numériques

I- Définition

Définition:

Une suite numérique est une fonction de $\mathbb N$ dans $\mathbb R$ définie à partir d'un certain rang n_0 .

$$\begin{array}{ccc} (U_n): \mathbb{N} & \boldsymbol{\rightarrow} & \mathbb{R} \\ & n \longmapsto u(n) \end{array}$$

La notation $(U_n)_{n \in \mathbb{N}}$ désigne la suite en tant qu'objet mathématique et U_n désigne le terme de rang (ou d'indice) n de la suite (terme que l'on pourrait noter u(n) mais l'usage en a voulu autrement)

Exemple: Il existe 2 façons de définir une suite:

• Suite définie de manière EXPLICITE (du type $U_n = f(n)$)

Terme initial de la suite

$$U_n = \frac{1}{n}$$
 pour $n \ge 1$

On obtient
$$U_1 = 1$$
, $U_2 = \frac{1}{2}$, $U_3 = \frac{1}{3}$ etc......

Intérêt on peut calculer le terme que l'on veut directement

• Suite définie de manière RECURRENTE

La relation définissant la suite dépend du (ou des) terme(s) précédent(s)

$$\begin{bmatrix} U_0 = & 1 \\ U_{n+1} = \sqrt{U_n^2 + 1} \end{bmatrix}$$
 Terme initial de la suite

On obtient
$$U_1 = \sqrt{U_0^2 + 1} = \sqrt{2}$$

$$U_2 = \sqrt{U_1^2 + 1} = \sqrt{2 + 1} = \sqrt{3}$$

$$U_3 = \sqrt{U_2^2 + 1} = \sqrt{3 + 1} = 2$$
 etc

Remarque On ne peut pas calculer un terme sans connaître le (ou les) précédents. Si on veut calculer U_{10} , il faut connaître U_9 et pour connaître U_9 il faut connaître U_8 etc

II- Un peu de programmation

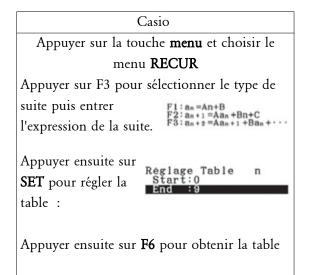
a) En algorithmique

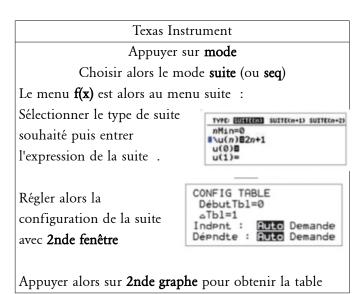
Ces algorithmes calculent les termes de la suite récurrente définie ci-dessus

Algorithme 1	Algorithme 2	Algorithme 3
1 from math import sqrt 2 u=2 3 for i in range(0,n): 4 u=sqrt(u**2+1) 5 print(u)	1 from math import sqrt 2 u=2 3 for i in range(0,n): 4 u=sqrt(u**2+1) 5 print(u)	<pre>1 from math import sqrt 2 Liste=[] 3 u=1 4 Liste.append(u) 5 for i in range(0,10): 6 u=sqrt(u**2+1) 7 Liste.append(u) 8 print(Liste)</pre>
On affiche les n premiers termes de la suite	On affiche LE n-ième terme de la suite	On utilise une variable de type liste

M. Philippe 1 / 4

b) A la calculatrice Appliquer les instructions suivante à la suite récurrente précédente :





III- Représentation graphique des termes d'une suite

On se place dans un repère (O, ; ; ;). On cherche à représenter dans ce repère les termes d'une suite (U_n). Cela dépend alors du mode de définition de la suite

a) Si la suite (U_n) est définie de manière explicite

On détermine la fonction f telle que $U_n = f(n)$. La représentation graphique de la suite (U_n) est constituée de l'ensemble des points de coordonnées (n;f(n)). Les termes de la suite sont donc les ordonnées des points

d'abscisses entières de la courbe C_f Exemple: $U_n = \sqrt{n-2}$ pour $n \ge 2$ $U_n = f(n)$ avec f(x) =On trace donc le graphe de la fonction f et on considère les

ordonnées des points de C_f d'abscisses entières.

b) Si la suite (U_n) est définie de manière récurrente

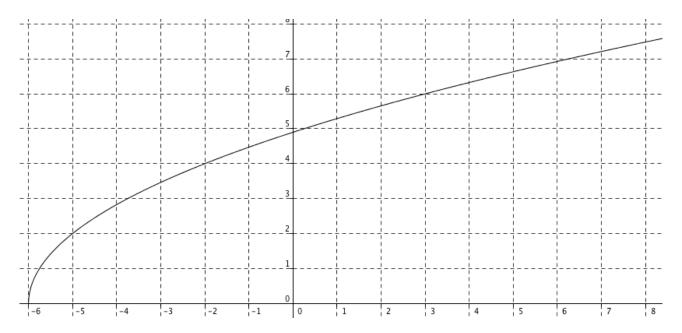
On détermine la fonction f telle que $U_{n+1} = f(U_n)$. On trace alors la courbe représentative de f ET la droite (d) d'équation y = x Les termes de la suite sont alors obtenus sur **l'axe des abscisses**

Exemple: Soit (U_n) la suite définie par :

$$\begin{cases} U_0 = -4 \\ U_{n+1} = 2\sqrt{U_n + 6} \end{cases} \qquad U_{n+1} = f(U_n) \text{ avec } f(x) = 0$$

2/4 M. Philippe

On trace donc le graphe de la fonction f et en utilisant la droite (d), on place en abscisse les termes de la suite



III- Sens de variation d'une suite

a) Définition

Soit (U_n) une suite de nombres réels

- La suite (U_n) est dite **croissante** à partir du rang n_0 lorsque pour tout entier $n \ge n_0$, $U_n \le U_{n+1}$
- La suite (U_n) est dite **décroissante** à partir du rang n_0 lorsque pour tout entier $n \ge n_0$, $U_n \ge U_{n+1}$
- La suite (U_n) est dite **monotone** à partir du rang n_0 si elle est croissante ou décroissante à partir du rang n_0
- La suite (U_n) est dite :
 - **Stationnaire** lorsque $U_{n+1} = U_n$ pour tout entier $n \ge n_0$
 - **constante** lorsque $U_{n+1} = U_n$ pour tout entier n

On définit de même la stricte croissance (ou décroissance) à l'aide d'inégalité stricte.

b) Méthodes

Qu'une suite soit croissante, décroissante ou constante, il s'agit de comparer U_n et U_{n+1} . Pour cela, on peut :

<u>Méthode 1</u>: Etudier le signe de la différence $U_{n+1} - U_n$ <u>Exemple</u>: $U_n = n^2 - 8n + 18$

M. Philippe 3 / 4

<u>Méthode 2</u>: Lorsque les termes de la suite sont strictement positifs, on peut comparer le quotient $\frac{U_{n+1}}{U_n}$ et 1 <u>Exemple</u>: $U_n = 2^n$ pour $n \in \mathbb{N}$.

<u>Méthode 3</u>: Lorsque la suite est définie de manière explicite $U_n = f(n)$ où f est une fonction définie sur un intervalle [a; $+\infty$ [, on peut exploiter les variations de f:

- Si f est croissante sur [a; $+\infty$ [, alors pour $n \ge a$, on a $f(n) \le f(n+1)$ c'est à dire $U_n \le U_{n+1}$ et la suite est croissante
- Si f est décroissante sur un intervalle [a ; $+ \infty$ [alors pour $n \ge a$, on a $f(n) \ge f(n+1)$ c'est à dire $U_n \ge U_{n+1}$ et la suite est décroissante

Exemple: $u_n = \frac{4n+1}{5n+2}$. On reparlera plus tard de cette méthode

IV- Comportement à l'infini

Définition intuitive : Suite convergente

On dit qu'une suite converge vers une limite L lorsque ses termes se rapprochent de plus en plus de L lorsque n devient de plus en plus grand . On note alors $\lim_{n \to +\infty} u_n = L$

Exemple: $u_n = 5 + \frac{1}{n}$

Quand n devient très grand, on imagine facilement que $\frac{1}{n}$ se rapproche de 0, on peut donc estimer que la suite converge vers 5 ce qui se note : $\lim_{n \to +\infty} u_n = 5$

Définition intuitive : Suite divergente

On dit qu'une suite est divergente lorsqu'elle n'est pas convergente. Deux cas sont possibles :

- 1. la suite n'a pas de limite
- 2. les termes de la suite tendent vers $+\infty$ (ou vers $-\infty$)

Dans le deuxième cas, on note : $\lim_{n\to+\infty}u_n=+\infty$ ou $\lim_{n\to+\infty}u_n=-\infty$

Exemples:

• $u_n = n^2 + 3n$

Quand n devient de plus en plus grand, on imagine que n^2 et 3n sont aussi de plus en plus grand donc comme on les additionne, on peut penser que la suite diverge et a pour limite $+\infty$

u_n=(-1)ⁿ
 Cette suite a des termes qui valent 1 si n est pair ou -1 si n est impair. On ne peut donc pas donner de limite à cette suite donc elle diverge

M. Philippe 4 / 4