
TP introduction du nombre dérivé

Partie A

Soit f la fonction définie par $f(x) = 5x^2$
Soit A le point de la courbe représentative C de f d'abscisse 1
et M celui d'abscisse 1+h où h est un réel
1) Calculer f(1) puis exprimer f(1+ h) en fonction de h
2) Exprimer alors le taux de variation T(h) de f entre 1 et 1 + h
et simplifier le au maximum. (vous devez trouver 10 + 5 h)
 Sur l'animation Géogébra proposée, on voit évoluer pour différente valeurs de h les sécantes (AM) à la courbe C.
a) Quel est leur coefficient directeur ?

b) Quelle remarque peut-on faire en observant ces animations ?
Pouvez-vous la justifier ?
c) Pourriez-vous tout de même donner une valeur pour T(h) dans un tel cas
e) rouritez vous tout de meme donner dite valeur pour r(n) dans un ter eas
d) Déterminer une équation de cette " sécante " passant par A et de
coefficient directeur la valeur trouvée précédemment pour T(h)
1 1 (/
e) Tracer cette sécante dans le repère ci contre.
Quel nom peut-on donner à cette droite ?

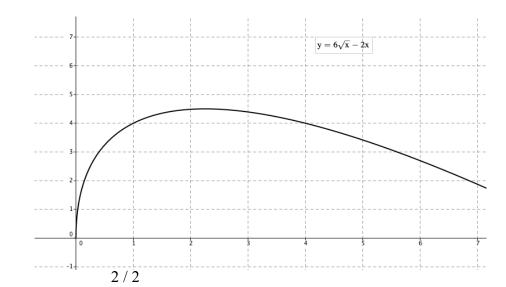
M. PHILIPPE 1/2

.....

2) Même questions avec un taux de variation entre 1 et 1+h qui vaut

$$\mathsf{T}(h) = \frac{6}{\sqrt{1+h}+1} - 2$$

Partie B


Soit g la fonction définie par $g(x) = 6\sqrt{x} - 2x$

1) On donne le taux de variation de g entre 4 et 4 + h: $T(h) = \frac{6}{\sqrt{4+h}+2} - 2$

a) En s'inspirant de la partie A, en quel point de la courbe de g se trouve-t-on ? Préciser ses coordonnées

.....

b) Calculer alors g'(4) et en déduire l'équation de la sécante particulière observée dans la première partie puis la tracer

