Exercice Centres étrangers (juin 2010)

Soit f la fonction définie sur l'intervalle [0;+ ∞ [par f(x) = 6 - $\frac{5}{x+1}$

Le but de cet exercice est d'étudier des suites (u_n) définies par un premier terme positif ou nul u_0 et vérifiant pour tout entier naturel $n:u_{n+1}=f(u_n)$

1) Etude de propriétés de la fonction f

- a) Etudier le sens de variation de la fonction f sur l'intervalle $[0;+\infty[$
- b) Résoudre sur l'intervalle [0;+ ∞ [l'équation f(x) = x . On note α la solution
- c) Montrer que si x appartient à l'intervalle $[0; \alpha[$ alors f(x) appartient à l'intervalle $[0; \alpha[$ De même, montrer que si x appartient à l'intervalle $[\alpha; +\infty[$ alors f(x) appartient à l'intervalle $[\alpha; +\infty[$

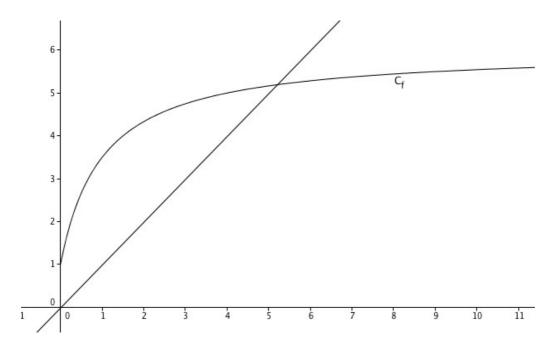
2) Etude de la suite (u_n) pour $u_0 = 0$

Dans cette question, on considère a suite (u_n) définie par $u_0=0$ et pour tout entier naturel $n: u_n+1=f(u_n)=6-\frac{5}{u_n+1}$

- a) Sur le graphique ci-dessous, sont représentées les courbes d'équations y = x et y = f(x). Placer le point A₀ de coordonnées (u₀;0) et en utilisant ces courbes, construire à partir de A₀ les points A₁,A₂,A₃,A₄ d'ordonnée nulle et d'abscisses respectives u₁, u₂, u₃, u₄.
- b) Démontrer par récurrence que, pour tout entier naturel n, $0 \leq u_n \leq u_{n+1} \leq \ \alpha$
- c) En déduire que la suite (u_n) est convergente et déterminer sa limite.

3) Etude des suites (u_n) selon les valeurs du réel positif ou nul u₀

Dans cette question, toute trace d'argumentation, même incomplète, ou d'initiative, même no fructueuse, sera prise en compte dans l'évaluation. Que peut-on dire du sens de variation et de la convergence de la suite (u_n) suivant les valeurs du réel positif ou nul u₀?



Corrigé

1) a) On a $f(x) = \frac{6x+1}{x+1}$ donc f est une fonction homographique. Elle est donc dérivable sur son ensemble de définition

c'est à dire \mathbb{R}^+ . On a : f '(x) = $\frac{5}{(x+1)^2}$ d'où f '(x) ≥ 0 et f est croissante sur \mathbb{R}^+ .

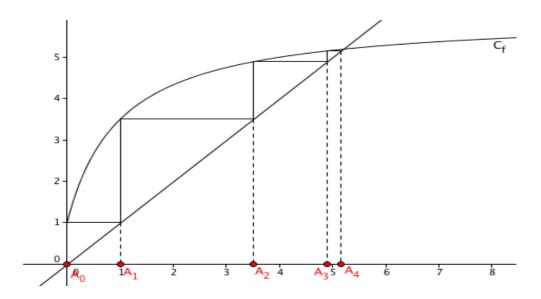
b) Pour
$$x \in \mathbb{R}^+$$
, $x + 1 \neq 0$ d'où $f(x) = x \Leftrightarrow \frac{6x+1}{x+1} = x \Leftrightarrow 6x + 1 = x^2 + x \Leftrightarrow x^2 - 5x - 1 = 0$

$$\Delta = 25 + 4 = 29 > 0$$
 donc deux solutions $x_1 = \frac{5 - \sqrt{29}}{2}$ et $x_2 = \frac{5 + \sqrt{29}}{2}$.

Comme
$$x \in \mathbb{R}^+$$
, on a: $\alpha = \frac{5 + \sqrt{29}}{2}$

c) $[0; \alpha[\subset \mathbb{R}^+ \text{ or } f \text{ est croissante sur } \mathbb{R}^+ \text{ donc elle conserve l'ordre cad} : 0 \le x < \alpha \iff f(0) \le f(x) < f(\alpha) \text{ avec } f(0) = 1 \text{ et } f(\alpha) = \alpha \text{ d'où } 1 \le f(x) < \alpha \text{ d'où } f(x) \in [0; \alpha[$

De même, pour $x \ge \alpha$, comme f est croissante, on a $f(x) \ge f(\alpha)$ cad $f(x) \ge \alpha$ d'où pour $x \ge \alpha$, $f(x) \in [\alpha; +\infty[$ 2)a) D'après le graphique, la suite (u_n) semble croissante et convergente vers α



b)Initialisation:
$$u_1 = \frac{6u_0 + 1}{u_0 + 1} = 1$$
 d'où $0 \le u_0 \le u_1 \le \alpha$ La relation est vraie au rang 0

<u>Supposons</u> qu'il existe un entier n pour lequel $0 \le u_n \le u_{n+1} \le \alpha$

Démontrons alors que : $0 \le u_{n+1} \le u_{n+2} \le \alpha$

D'après l'hypothèse de récurrence et comme f est croissante sur \mathbb{R}^+ , on $a:f(0) \leq f(u_u) \leq f(u_{n+1}) \leq f(\alpha)$ c'est à dire $1 \leq u_{n+1} \leq u_{n+2} \leq \alpha$ d'où $0 \leq u_{n+1} \leq u_{n+2} \leq \alpha$ CQFD

c) On vient de voir que pour tout $n \in \mathbb{N}$, $u_n \le u_{n+1}$ donc la suite (u_n) est croissante et majorée par α donc elle converge vers l.

La fonction f étant continue sur [0; α [, l vérifie : $\lim_{n \to +\infty} u_n = l \Rightarrow \lim_{n \to +\infty} f(u_n) = f(l) \Rightarrow f(l) = l$ Or seul α vérifie f(x) = x sur [0; $+\infty$ [d'où $l = \alpha$.

3)

- Si $u_0 \in [0; \alpha[$, la suite (u_n) est croissante et converge vers α .
- Si $u_0 = \alpha$, la suite u_n est constante et égale à α
- Si u₀ ∈]α;+∞[, la suite u_n est décroissante et converge vers α
 Les démonstrations se font de la même manière que pour u₀ = 0